Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1388–1398. doi: 10.1016/S0006-3495(98)77851-8

Hybrid bilayer membranes in air and water: infrared spectroscopy and neutron reflectivity studies.

C W Meuse 1, S Krueger 1, C F Majkrzak 1, J A Dura 1, J Fu 1, J T Connor 1, A L Plant 1
PMCID: PMC1299485  PMID: 9512035

Abstract

In this report we describe the fabrication and characterization of a phospholipid/alkanethiol hybrid bilayer membrane in air. The bilayer is formed by the interaction of phospholipid with the hydrophobic surface of a self-assembled alkanethiol monolayer on gold. We have characterized the resulting hybrid bilayer membrane in air using atomic force microscopy, spectroscopic ellipsometry, and reflection-absorption infrared spectroscopy. These analyses indicate that the phospholipid added is one monolayer thick, is continuous, and exhibits molecular order which is similar to that observed for phospholipid/phospholipid model membranes. The hybrid bilayer prepared in air has also been re-introduced to water and characterized using neutron reflectivity and impedance spectroscopy. Impedance data indicate that when moved from air to water, hybrid bilayers exhibit a dielectric constant and thickness that is essentially equivalent to hybrid bilayers prepared in situ by adding phospholipid vesicles to alkanethiol monolayers in water. Neutron scattering from these samples was collected out to a wave vector transfer of 0.25 A(-1), and provided a sensitivity to changes in total layer thickness on the order of 1-2 A. The data confirm that the acyl chain region of the phospholipid layer is consistent with that observed for phospholipid-phospholipid bilayers, but suggest greater hydration of the phospholipid headgroups of HBMs than has been reported in studies of lipid multilayers.

Full Text

The Full Text of this article is available as a PDF (225.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berk NF, Majkrzak CF. Using parametric B splines to fit specular reflectivities. Phys Rev B Condens Matter. 1995 May 1;51(17):11296–11309. doi: 10.1103/physrevb.51.11296. [DOI] [PubMed] [Google Scholar]
  2. Büldt G., Gally H. U., Seelig J., Zaccai G. Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J Mol Biol. 1979 Nov 15;134(4):673–691. doi: 10.1016/0022-2836(79)90479-0. [DOI] [PubMed] [Google Scholar]
  3. Florin E. L., Gaub H. E. Painted supported lipid membranes. Biophys J. 1993 Feb;64(2):375–383. doi: 10.1016/S0006-3495(93)81378-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Johnson S. J., Bayerl T. M., McDermott D. C., Adam G. W., Rennie A. R., Thomas R. K., Sackmann E. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J. 1991 Feb;59(2):289–294. doi: 10.1016/S0006-3495(91)82222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kalb E., Frey S., Tamm L. K. Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta. 1992 Jan 31;1103(2):307–316. doi: 10.1016/0005-2736(92)90101-q. [DOI] [PubMed] [Google Scholar]
  6. Linseisen F. M., Hetzer M., Brumm T., Bayerl T. M. Differences in the physical properties of lipid monolayers and bilayers on a spherical solid support. Biophys J. 1997 Apr;72(4):1659–1667. doi: 10.1016/S0006-3495(97)78811-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lösche M., Piepenstock M., Diederich A., Grünewald T., Kjaer K., Vaknin D. Influence of surface chemistry on the structural organization of monomolecular protein layers adsorbed to functionalized aqueous interfaces. Biophys J. 1993 Nov;65(5):2160–2177. doi: 10.1016/S0006-3495(93)81269-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Nagle J. F., Wiener M. C. Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta. 1988 Jul 7;942(1):1–10. doi: 10.1016/0005-2736(88)90268-4. [DOI] [PubMed] [Google Scholar]
  9. Nagle J. F., Wilkinson D. A. Lecithin bilayers. Density measurement and molecular interactions. Biophys J. 1978 Aug;23(2):159–175. doi: 10.1016/S0006-3495(78)85441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Nagle J. F., Zhang R., Tristram-Nagle S., Sun W., Petrache H. I., Suter R. M. X-ray structure determination of fully hydrated L alpha phase dipalmitoylphosphatidylcholine bilayers. Biophys J. 1996 Mar;70(3):1419–1431. doi: 10.1016/S0006-3495(96)79701-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Plant A. L., Brigham-Burke M., Petrella E. C., O'Shannessy D. J. Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal Biochem. 1995 Apr 10;226(2):342–348. doi: 10.1006/abio.1995.1234. [DOI] [PubMed] [Google Scholar]
  12. Plant A. L., Gueguetchkeri M., Yap W. Supported phospholipid/alkanethiol biomimetic membranes: insulating properties. Biophys J. 1994 Sep;67(3):1126–1133. doi: 10.1016/S0006-3495(94)80579-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rao N. M., Plant A. L., Silin V., Wight S., Hui S. W. Characterization of biomimetic surfaces formed from cell membranes. Biophys J. 1997 Dec;73(6):3066–3077. doi: 10.1016/S0006-3495(97)78334-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Reinl H., Brumm T., Bayerl T. M. Changes of the physical properties of the liquid-ordered phase with temperature in binary mixtures of DPPC with cholesterol: A H-NMR, FT-IR, DSC, and neutron scattering study. Biophys J. 1992 Apr;61(4):1025–1035. doi: 10.1016/S0006-3495(92)81910-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richardson J. S., Richardson D. C., Tweedy N. B., Gernert K. M., Quinn T. P., Hecht M. H., Erickson B. W., Yan Y., McClain R. D., Donlan M. E. Looking at proteins: representations, folding, packing, and design. Biophysical Society National Lecture, 1992. Biophys J. 1992 Nov;63(5):1185–1209. [PMC free article] [PubMed] [Google Scholar]
  16. Sun W, Suter RM, Knewtson MA, Worthington CR, Tristram-Nagle S, Zhang R, Nagle JF. Order and disorder in fully hydrated unoriented bilayers of gel-phase dipalmitoylphosphatidylcholine. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 May;49(5):4665–4676. doi: 10.1103/physreve.49.4665. [DOI] [PubMed] [Google Scholar]
  17. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Tristram-Nagle S., Zhang R., Suter R. M., Worthington C. R., Sun W. J., Nagle J. F. Measurement of chain tilt angle in fully hydrated bilayers of gel phase lecithins. Biophys J. 1993 Apr;64(4):1097–1109. doi: 10.1016/S0006-3495(93)81475-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Vaknin D., Als-Nielsen J., Piepenstock M., Lösche M. Recognition processes at a functionalized lipid surface observed with molecular resolution. Biophys J. 1991 Dec;60(6):1545–1552. doi: 10.1016/S0006-3495(91)82189-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wiener M. C., Suter R. M., Nagle J. F. Structure of the fully hydrated gel phase of dipalmitoylphosphatidylcholine. Biophys J. 1989 Feb;55(2):315–325. doi: 10.1016/S0006-3495(89)82807-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES