Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1399–1408. doi: 10.1016/S0006-3495(98)77852-X

The adsorption of phloretin to lipid monolayers and bilayers cannot be explained by langmuir adsorption isotherms alone.

R Cseh 1, R Benz 1
PMCID: PMC1299486  PMID: 9512036

Abstract

Phloretin and its analogs adsorb to the surfaces of lipid monolayers and bilayers and decrease the dipole potential. This reduces the conductance for anions and increases that for cations on artificial and biological membranes. The relationship between the change in the dipole potential and the aqueous concentration of phloretin has been explained previously by a Langmuir adsorption isotherm and a weak and therefore negligible contribution of the dipole-dipole interactions in the lipid surface. We demonstrate here that the Langmuir adsorption isotherm alone is not able to properly describe the effects of dipole molecule binding to lipid surfaces--we found significant deviations between experimental data and the fit with the Langmuir adsorption isotherm. We present here an alternative theoretical treatment that takes into account the strong interaction between membrane (monolayer) dipole field and the dipole moment of the adsorbed molecule. This treatment provides a much better fit of the experimental results derived from the measurements of surface potentials of lipid monolayers in the presence of phloretin. Similarly, the theory provides a much better fit of the phloretin-induced changes in the dipole potential of lipid bilayers, as assessed by the transport kinetics of the lipophilic ion dipicrylamine.

Full Text

The Full Text of this article is available as a PDF (94.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S., Feldberg S., Nakadomari H., Levy S., McLaughlin S. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Biophys J. 1978 Jan;21(1):35–70. doi: 10.1016/S0006-3495(78)85507-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen O. S., Finkelstein A., Katz I., Cass A. Effect of phloretin on the permeability of thin lipid membranes. J Gen Physiol. 1976 Jun;67(6):749–771. doi: 10.1085/jgp.67.6.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Awiszus R., Stark G. A laser-T-jump study of the adsorption of dipolar molecules to planar lipid membranes. II. Phloretin and phloretin analogues. Eur Biophys J. 1988;15(6):321–328. doi: 10.1007/BF00254719. [DOI] [PubMed] [Google Scholar]
  4. BROCKMAN H. Dipole potential of lipid membranes. Chem Phys Lipids. 1994 Sep 6;73(1-2):57–79. doi: 10.1016/0009-3084(94)90174-0. [DOI] [PubMed] [Google Scholar]
  5. Bechinger B., Seelig J. Interaction of electric dipoles with phospholipid head groups. A 2H and 31P NMR study of phloretin and phloretin analogues in phosphatidylcholine membranes. Biochemistry. 1991 Apr 23;30(16):3923–3929. doi: 10.1021/bi00230a017. [DOI] [PubMed] [Google Scholar]
  6. Benz R., Cros D. Influence of sterols on ion transport through lipid bilayer membranes. Biochim Biophys Acta. 1978 Jan 19;506(2):265–280. doi: 10.1016/0005-2736(78)90397-8. [DOI] [PubMed] [Google Scholar]
  7. Benz R., Gisin B. F. Influence of membrane structure on ion transport through lipid bilayer membranes. J Membr Biol. 1978 Jun 9;40(4):293–314. doi: 10.1007/BF01874161. [DOI] [PubMed] [Google Scholar]
  8. Benz R., Janko K. Voltage-induce capacitance relaxation of lipid bilayer membranes. Effects of membrane composition. Biochim Biophys Acta. 1976 Dec 14;455(3):721–738. doi: 10.1016/0005-2736(76)90043-2. [DOI] [PubMed] [Google Scholar]
  9. Benz R., Läuger P., Janko K. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. Biochim Biophys Acta. 1976 Dec 14;455(3):701–720. doi: 10.1016/0005-2736(76)90042-0. [DOI] [PubMed] [Google Scholar]
  10. Benz R., Läuger P. Transport kinetics of dipicrylamine through lipid bilayer membranes. Effects of membrane structure. Biochim Biophys Acta. 1977 Jul 14;468(2):245–258. doi: 10.1016/0005-2736(77)90118-3. [DOI] [PubMed] [Google Scholar]
  11. Benz R. Structural requirement for the rapid movement of charged molecules across membranes. Experiments with tetraphenylborate analogues. Biophys J. 1988 Jul;54(1):25–33. doi: 10.1016/S0006-3495(88)82927-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coster H. G., Smith J. R. The molecular organisation of bimolecular lipid membranes. A study of the low frequency Maxwell-Wagner impedance dispersion. Biochim Biophys Acta. 1974 Dec 10;373(2):151–164. doi: 10.1016/0005-2736(74)90142-4. [DOI] [PubMed] [Google Scholar]
  13. Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haydon D. A., Hladky S. B. Ion transport across thin lipid membranes: a critical discussion of mechanisms in selected systems. Q Rev Biophys. 1972 May;5(2):187–282. doi: 10.1017/s0033583500000883. [DOI] [PubMed] [Google Scholar]
  16. Haydon D. A., Myers V. B. Surface charge, surface dipoles and membrane conductance. Biochim Biophys Acta. 1973 May 25;307(3):429–443. doi: 10.1016/0005-2736(73)90289-7. [DOI] [PubMed] [Google Scholar]
  17. Jennings M. L., Solomon A. K. Interaction between phloretin and the red blood cell membrane. J Gen Physiol. 1976 Apr;67(4):381–397. doi: 10.1085/jgp.67.4.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klotz K. H., Benz R. Kinetics of the iodine- and bromine-mediated transport of halide ions: demonstration of an interfacial complexation mechanism. Biophys J. 1993 Dec;65(6):2661–2672. doi: 10.1016/S0006-3495(93)81315-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LEFEVRE P. G., MARSHALL J. K. The atachment of phloretin and analogues to human erythrocytes in connection with inhibition of sugar transport. J Biol Chem. 1959 Nov;234:3022–3026. [PubMed] [Google Scholar]
  20. Melnik E., Latorre R., Hall J. E., Tosteson D. C. Phloretin-induced changes in ion transport across lipid bilayer membranes. J Gen Physiol. 1977 Feb;69(2):243–257. doi: 10.1085/jgp.69.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Owen J. D. The effect of phloretin on the potassium conductance in Aplysia giant neurons. J Membr Biol. 1974;16(1):65–78. doi: 10.1007/BF01872407. [DOI] [PubMed] [Google Scholar]
  22. Paltauf F., Hauser H., Phillips M. C. Monolayer characteristics of some 1,2-diacyl, I-alkyl-2-acyl and 1,2-dialkyl phospholipids at the air-water interface. Biochim Biophys Acta. 1971 Dec 3;249(2):539–547. doi: 10.1016/0005-2736(71)90129-5. [DOI] [PubMed] [Google Scholar]
  23. Szabo G. Dual mechanism for the action of cholesterol on membrane permeability. Nature. 1974 Nov 1;252(5478):47–49. doi: 10.1038/252047a0. [DOI] [PubMed] [Google Scholar]
  24. Verkman A. S., Solomon A. K. Kinetics of phloretin binding to phosphatidylcholine vesicle membranes. J Gen Physiol. 1980 Jun;75(6):673–692. doi: 10.1085/jgp.75.6.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Verkman A. S. The quenching of an intramembrane fluorescent probe. A method to study the binding and permeation of phloretin through bilayers. Biochim Biophys Acta. 1980 Jul;599(2):370–379. doi: 10.1016/0005-2736(80)90184-4. [DOI] [PubMed] [Google Scholar]
  26. de Levie R., Rangarajan S. K., Seelig P. F., Andersen O. S. On the adsorption of phloretin onto a black lipid membrane. Biophys J. 1979 Feb;25(2 Pt 1):295–300. doi: 10.1016/s0006-3495(79)85292-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES