Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1409–1420. doi: 10.1016/S0006-3495(98)77853-1

Electron cryomicroscopy of bacteriorhodopsin vesicles: mechanism of vesicle formation.

N D Denkov 1, H Yoshimura 1, T Kouyama 1, J Walz 1, K Nagayama 1
PMCID: PMC1299487  PMID: 9512037

Abstract

We obtained vesicles from purple membrane of Halobacterium halobium at different suspension compositions (pH, electrolytes, buffers), following the procedure of Kouyama et al. (1994) (J. Mol. Biol. 236:990-994). The vesicles contained bacteriorhodopsin (bR) and halolipid, and spontaneously formed during incubation of purple membrane suspension in the presence of detergent octylthioglucoside (OTG) if the protein:OTG ratio was 2:1 by weight. The size distribution of the vesicles was precisely determined by electron cryomicroscopy and was found to be almost independent on the incubation conditions (mean radius 17.9-19 nm). The size distribution in a given sample was close to the normal one, with a standard deviation of approximately +/- 1 nm. During dialysis for removal of the detergent, the vesicles diminished their radius by 2-2.5 nm. The results allow us to conclude that the driving force for the formation of bR vesicles is the preferential incorporation of OTG molecules in the cytoplasmic side of the membrane (with possible preferential delipidation of the extracellular side), which creates spontaneous curvature of the purple membrane. From the size distribution of the vesicles, we calculated the elasticity bending constant, K(B) approximately 9 x 10(-20) J, of the vesicle wall. The results provide some insight into the possible formation mechanisms of spherical assembles in living organisms. The conditions for vesicle formation and the mechanical properties of the vesicles could also be of interest with respect to the potential technological application of the bR vesicles as light energy converters.

Full Text

The Full Text of this article is available as a PDF (352.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
  2. Denkov ND, Yoshimura H, Nagayama K, Kouyama T. Nanoparticle arrays in freely suspended vitrified films. Phys Rev Lett. 1996 Mar 25;76(13):2354–2357. doi: 10.1103/PhysRevLett.76.2354. [DOI] [PubMed] [Google Scholar]
  3. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
  4. Evans E, Rawicz W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett. 1990 Apr 23;64(17):2094–2097. doi: 10.1103/PhysRevLett.64.2094. [DOI] [PubMed] [Google Scholar]
  5. Fukuda K., Ikegami A., Nasuda-Kouyama A., Kouyama T. Effect of partial delipidation of purple membrane on the photodynamics of bacteriorhodopsin. Biochemistry. 1990 Feb 27;29(8):1997–2002. doi: 10.1021/bi00460a006. [DOI] [PubMed] [Google Scholar]
  6. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  7. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  8. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
  9. Henderson R., Jubb J. S., Whytock S. Specific labelling of the protein and lipid on the extracellular surface of purple membrane. J Mol Biol. 1978 Aug 5;123(2):259–274. doi: 10.1016/0022-2836(78)90325-x. [DOI] [PubMed] [Google Scholar]
  10. Henderson R., Shotton D. Crystallization of purple membrane in three dimensions. J Mol Biol. 1980 May 15;139(2):99–109. doi: 10.1016/0022-2836(80)90298-3. [DOI] [PubMed] [Google Scholar]
  11. Henderson R. The structure of the purple membrane from Halobacterium hallobium: analysis of the X-ray diffraction pattern. J Mol Biol. 1975 Apr 5;93(2):123–138. doi: 10.1016/0022-2836(75)90123-0. [DOI] [PubMed] [Google Scholar]
  12. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  13. Horne R. W., Ronchetti I. P. A negative staining-carbon film technique for studying viruses in the electron microscope. I. Preparative procedures for examining icosahedral and filamentous viruses. J Ultrastruct Res. 1974 Jun;47(3):361–383. doi: 10.1016/s0022-5320(74)90015-x. [DOI] [PubMed] [Google Scholar]
  14. Horne R. W. The formation of virus crystalline and paracrystalline arrays for electron microscopy and image analysis. Adv Virus Res. 1979;24:173–221. doi: 10.1016/s0065-3527(08)60394-2. [DOI] [PubMed] [Google Scholar]
  15. Israelachvili J. N., Marcelja S., Horn R. G. Physical principles of membrane organization. Q Rev Biophys. 1980 May;13(2):121–200. doi: 10.1017/s0033583500001645. [DOI] [PubMed] [Google Scholar]
  16. Israelachvili J. N. Refinement of the fluid-mosaic model of membrane structure. Biochim Biophys Acta. 1977 Sep 5;469(2):221–225. doi: 10.1016/0005-2736(77)90185-7. [DOI] [PubMed] [Google Scholar]
  17. KLUG A., CASPAR D. L. The structure of small viruses. Adv Virus Res. 1960;7:225–325. doi: 10.1016/s0065-3527(08)60012-3. [DOI] [PubMed] [Google Scholar]
  18. Kates M., Moldoveanu N., Stewart L. C. On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim Biophys Acta. 1993 Jul 21;1169(1):46–53. doi: 10.1016/0005-2760(93)90080-s. [DOI] [PubMed] [Google Scholar]
  19. Kelly R. B. Storage and release of neurotransmitters. Cell. 1993 Jan;72 (Suppl):43–53. doi: 10.1016/s0092-8674(05)80027-3. [DOI] [PubMed] [Google Scholar]
  20. Khorana H. G. Bacteriorhodopsin, a membrane protein that uses light to translocate protons. J Biol Chem. 1988 Jun 5;263(16):7439–7442. [PubMed] [Google Scholar]
  21. Kimura Y., Vassylyev D. G., Miyazawa A., Kidera A., Matsushima M., Mitsuoka K., Murata K., Hirai T., Fujiyoshi Y. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature. 1997 Sep 11;389(6647):206–211. doi: 10.1038/38323. [DOI] [PubMed] [Google Scholar]
  22. Kouyama T., Yamamoto M., Kamiya N., Iwasaki H., Ueki T., Sakurai I. Polyhedral assembly of a membrane protein in its three-dimensional crystal. J Mol Biol. 1994 Mar 4;236(4):990–994. doi: 10.1016/0022-2836(94)90005-1. [DOI] [PubMed] [Google Scholar]
  23. Kreis T. E. Regulation of vesicular and tubular membrane traffic of the Golgi complex by coat proteins. Curr Opin Cell Biol. 1992 Aug;4(4):609–615. doi: 10.1016/0955-0674(92)90079-r. [DOI] [PubMed] [Google Scholar]
  24. Kühlbrandt W. Three-dimensional crystallization of membrane proteins. Q Rev Biophys. 1988 Nov;21(4):429–477. doi: 10.1017/s0033583500004625. [DOI] [PubMed] [Google Scholar]
  25. Ladenstein R., Schneider M., Huber R., Bartunik H. D., Wilson K., Schott K., Bacher A. Heavy riboflavin synthase from Bacillus subtilis. Crystal structure analysis of the icosahedral beta 60 capsid at 3.3 A resolution. J Mol Biol. 1988 Oct 20;203(4):1045–1070. doi: 10.1016/0022-2836(88)90128-3. [DOI] [PubMed] [Google Scholar]
  26. Michel H. Characterization and crystal packing of three-dimensional bacteriorhodopsin crystals. EMBO J. 1982;1(10):1267–1271. doi: 10.1002/j.1460-2075.1982.tb00023.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Michel H., Oesterhelt D. Three-dimensional crystals of membrane proteins: bacteriorhodopsin. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1283–1285. doi: 10.1073/pnas.77.3.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Oesterhelt D., Stoeckenius W. Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2853–2857. doi: 10.1073/pnas.70.10.2853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Oesterhelt D., Stoeckenius W. Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Methods Enzymol. 1974;31:667–678. doi: 10.1016/0076-6879(74)31072-5. [DOI] [PubMed] [Google Scholar]
  30. Orcl L., Palmer D. J., Amherdt M., Rothman J. E. Coated vesicle assembly in the Golgi requires only coatomer and ARF proteins from the cytosol. Nature. 1993 Aug 19;364(6439):732–734. doi: 10.1038/364732a0. [DOI] [PubMed] [Google Scholar]
  31. Pearse B. M., Crowther R. A. Structure and assembly of coated vesicles. Annu Rev Biophys Biophys Chem. 1987;16:49–68. doi: 10.1146/annurev.bb.16.060187.000405. [DOI] [PubMed] [Google Scholar]
  32. Rehorek M., Heyn M. P. Binding of all-trans-retinal to the purple membrane. Evidence for cooperativity and determination of the extinction coefficient. Biochemistry. 1979 Oct 30;18(22):4977–4983. doi: 10.1021/bi00589a027. [DOI] [PubMed] [Google Scholar]
  33. Schertler G. F., Bartunik H. D., Michel H., Oesterhelt D. Orthorhombic crystal form of bacteriorhodopsin nucleated on benzamidine diffracting to 3.6 A resolution. J Mol Biol. 1993 Nov 5;234(1):156–164. doi: 10.1006/jmbi.1993.1570. [DOI] [PubMed] [Google Scholar]
  34. Takeda S., Yoshimura H., Endo S., Takahashi T., Nagayama K. Control of crystal forms of apoferritin by site-directed mutagenesis. Proteins. 1995 Dec;23(4):548–556. doi: 10.1002/prot.340230409. [DOI] [PubMed] [Google Scholar]
  35. Unwin P. N., Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol. 1975 May 25;94(3):425–440. doi: 10.1016/0022-2836(75)90212-0. [DOI] [PubMed] [Google Scholar]
  36. Zingsheim H. P., Neugebauer D. C., Henderson R. Properties of the two sides of the purple membrane correlated. J Mol Biol. 1978 Aug 5;123(2):275–278. doi: 10.1016/0022-2836(78)90326-1. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES