Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Mar;74(3):1484–1491. doi: 10.1016/S0006-3495(98)77860-9

Insertion of telomere repeat sequence decreases plasmid DNA condensation by cobalt (III) hexaammine.

J R Schnell 1, J Berman 1, V A Bloomfield 1
PMCID: PMC1299494  PMID: 9512044

Abstract

Telomere repeat sequence (TRS) DNA is found at the termini of most eukaryotic chromosomes. The sequences are highly repetitive and G-rich (e.g., [C(1-3)A/TG(1-3)]n for the yeast Saccharomyces cerevisiae) and are packaged into nonnucleosomal protein-DNA structures in vivo. We have used total intensity light scattering and electron microscopy to monitor the effects of yeast TRS inserts on in vitro DNA condensation by cobalt (III) hexaammine. Insertion of 72 bp of TRS into a 3.3-kb plasmid depresses condensation as seen by light scattering and results in a 22% decrease in condensate thickness as measured by electron microscopy. Analysis of toroidal condensate dimensions suggests that the growth stages of condensation are inhibited by the presence of a TRS insert. The depression in total light scattering intensity is greater when the plasmid is linearized with the TRS at an end (39-49%) than when linearized with the TRS in the interior (18-22%). Circular dichroism of a 95-bp fragment containing the TRS insert gives a spectrum that is intermediate between the A-form and B-form, and the anomalous condensation behavior of the TRS suggests a noncanonical DNA structure. We speculate that under conditions in which the plasmid DNA condenses, the telomeric insert assumes a helical geometry that is similar to the A-form and is incompatible with packing into the otherwise B-form lattice of the condensate interior.

Full Text

The Full Text of this article is available as a PDF (158.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arscott P. G., Li A. Z., Bloomfield V. A. Condensation of DNA by trivalent cations. 1. Effects of DNA length and topology on the size and shape of condensed particles. Biopolymers. 1990;30(5-6):619–630. doi: 10.1002/bip.360300514. [DOI] [PubMed] [Google Scholar]
  2. Arscott P. G., Ma C., Wenner J. R., Bloomfield V. A. DNA condensation by cobalt hexaammine (III) in alcohol-water mixtures: dielectric constant and other solvent effects. Biopolymers. 1995 Sep;36(3):345–364. doi: 10.1002/bip.360360309. [DOI] [PubMed] [Google Scholar]
  3. Balagurumoorthy P., Brahmachari S. K., Mohanty D., Bansal M., Sasisekharan V. Hairpin and parallel quartet structures for telomeric sequences. Nucleic Acids Res. 1992 Aug 11;20(15):4061–4067. doi: 10.1093/nar/20.15.4061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baumann C. G., Bloomfield V. A. Large-scale purification of plasmid DNA for biophysical and molecular biology studies. Biotechniques. 1995 Dec;19(6):884–890. [PubMed] [Google Scholar]
  5. Bloomfield V. A. DNA condensation. Curr Opin Struct Biol. 1996 Jun;6(3):334–341. doi: 10.1016/s0959-440x(96)80052-2. [DOI] [PubMed] [Google Scholar]
  6. Braunlin W. H., Xu Q. Hexaamminecobalt(III) binding environments on double-helical DNA. Biopolymers. 1992 Dec;32(12):1703–1711. doi: 10.1002/bip.360321212. [DOI] [PubMed] [Google Scholar]
  7. Brown D. D. How a simple animal gene works. Harvey Lect. 1980;76:27–44. [PubMed] [Google Scholar]
  8. Budarf M., Blackburn E. S1 nuclease sensitivity of a double-stranded telomeric DNA sequence. Nucleic Acids Res. 1987 Aug 11;15(15):6273–6292. doi: 10.1093/nar/15.15.6273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cacchione S., Cerone M. A., Savino M. In vitro low propensity to form nucleosomes of four telomeric sequences. FEBS Lett. 1997 Jan 2;400(1):37–41. doi: 10.1016/s0014-5793(96)01318-x. [DOI] [PubMed] [Google Scholar]
  10. Duguid J. G., Bloomfield V. A., Benevides J. M., Thomas G. J., Jr Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Biophys J. 1995 Dec;69(6):2623–2641. doi: 10.1016/S0006-3495(95)80133-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fairall L., Martin S., Rhodes D. The DNA binding site of the Xenopus transcription factor IIIA has a non-B-form structure. EMBO J. 1989 Jun;8(6):1809–1817. doi: 10.1002/j.1460-2075.1989.tb03575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fang G., Cech T. R. The beta subunit of Oxytricha telomere-binding protein promotes G-quartet formation by telomeric DNA. Cell. 1993 Sep 10;74(5):875–885. doi: 10.1016/0092-8674(93)90467-5. [DOI] [PubMed] [Google Scholar]
  13. Giraldo R., Suzuki M., Chapman L., Rhodes D. Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7658–7662. doi: 10.1073/pnas.91.16.7658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gosule L. C., Schellman J. A. Compact form of DNA induced by spermidine. Nature. 1976 Jan 29;259(5541):333–335. doi: 10.1038/259333a0. [DOI] [PubMed] [Google Scholar]
  15. Gosule L. C., Schellman J. A. DNA condensation with polyamines I. Spectroscopic studies. J Mol Biol. 1978 May 25;121(3):311–326. doi: 10.1016/0022-2836(78)90366-2. [DOI] [PubMed] [Google Scholar]
  16. Henikoff S., Eghtedarzadeh M. K. Conserved arrangement of nested genes at the Drosophila Gart locus. Genetics. 1987 Dec;117(4):711–725. doi: 10.1093/genetics/117.4.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huber P. W., Blobe G. C., Hartmann K. M. Conformational studies of the nucleic acid binding sites for Xenopus transcription factor IIIA. J Biol Chem. 1991 Feb 15;266(5):3278–3286. [PubMed] [Google Scholar]
  18. Levin-Zaidman S., Reich Z., Wachtel E. J., Minsky A. Flow of structural information between four DNA conformational levels. Biochemistry. 1996 Mar 5;35(9):2985–2991. doi: 10.1021/bi9525482. [DOI] [PubMed] [Google Scholar]
  19. Lu P., Cheung S., Donlan M. A recurrent DNA sequence at sites of protein interaction. Adv Biophys. 1985;20:153–175. doi: 10.1016/0065-227x(85)90035-8. [DOI] [PubMed] [Google Scholar]
  20. Lyubchenko Y. L., Shlyakhtenko L. S., Appella E., Harrington R. E. CA runs increase DNA flexibility in the complex of lambda Cro protein with the OR3 site. Biochemistry. 1993 Apr 20;32(15):4121–4127. doi: 10.1021/bi00066a038. [DOI] [PubMed] [Google Scholar]
  21. Ma C., Bloomfield V. A. Condensation of supercoiled DNA induced by MnCl2. Biophys J. 1994 Oct;67(4):1678–1681. doi: 10.1016/S0006-3495(94)80641-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ma C., Sun L., Bloomfield V. A. Condensation of plasmids enhanced by Z-DNA conformation of d(CG)n inserts. Biochemistry. 1995 Mar 21;34(11):3521–3528. doi: 10.1021/bi00011a005. [DOI] [PubMed] [Google Scholar]
  23. Marx K. A., Ruben G. C. Evidence for hydrated spermidine-calf thymus DNA toruses organized by circumferential DNA wrapping. Nucleic Acids Res. 1983 Mar 25;11(6):1839–1854. doi: 10.1093/nar/11.6.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Matsuzawa Y., Yonezawa Y., Yoshikawa K. Formation of nucleation center in single double-stranded DNA chain. Biochem Biophys Res Commun. 1996 Aug 23;225(3):796–800. doi: 10.1006/bbrc.1996.1253. [DOI] [PubMed] [Google Scholar]
  25. McCall M., Brown T., Hunter W. N., Kennard O. The crystal structure of d(GGATGGGAG): an essential part of the binding site for transcription factor IIIA. Nature. 1986 Aug 14;322(6080):661–664. doi: 10.1038/322661a0. [DOI] [PubMed] [Google Scholar]
  26. Minchenkova L. E., Schyolkina A. K., Chernov B. K., Ivanov V. I. CC/GG contacts facilitate the B to A transition of DNA in solution. J Biomol Struct Dyn. 1986 Dec;4(3):463–476. doi: 10.1080/07391102.1986.10506362. [DOI] [PubMed] [Google Scholar]
  27. Nishimura Y., Torigoe C., Tsuboi M. An A-form poly(dG).poly(dC) in H2O solution. Biopolymers. 1985 Sep;24(9):1841–1844. doi: 10.1002/bip.360240913. [DOI] [PubMed] [Google Scholar]
  28. Pavletich N. P., Pabo C. O. Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science. 1993 Sep 24;261(5129):1701–1707. doi: 10.1126/science.8378770. [DOI] [PubMed] [Google Scholar]
  29. Plum G. E., Arscott P. G., Bloomfield V. A. Condensation of DNA by trivalent cations. 2. Effects of cation structure. Biopolymers. 1990;30(5-6):631–643. doi: 10.1002/bip.360300515. [DOI] [PubMed] [Google Scholar]
  30. Rau D. C., Parsegian V. A. Direct measurement of the intermolecular forces between counterion-condensed DNA double helices. Evidence for long range attractive hydration forces. Biophys J. 1992 Jan;61(1):246–259. doi: 10.1016/S0006-3495(92)81831-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reich Z., Friedman P., Levin-Zaidman S., Minsky A. Effects of adenine tracts on the B-Z transition. Fine tuning of DNA conformational transition processes. J Biol Chem. 1993 Apr 15;268(11):8261–8266. [PubMed] [Google Scholar]
  32. Reich Z., Ghirlando R., Minsky A. Nucleic acids packaging processes: effects of adenine tracts and sequence-dependent curvature. J Biomol Struct Dyn. 1992 Jun;9(6):1097–1109. doi: 10.1080/07391102.1992.10507981. [DOI] [PubMed] [Google Scholar]
  33. Reich Z., Ghirlando R., Minsky A. Secondary conformational polymorphism of nucleic acids as a possible functional link between cellular parameters and DNA packaging processes. Biochemistry. 1991 Aug 6;30(31):7828–7836. doi: 10.1021/bi00245a024. [DOI] [PubMed] [Google Scholar]
  34. Reich Z., Levin-Zaidman S., Gutman S. B., Arad T., Minsky A. Supercoiling-regulated liquid-crystalline packaging of topologically-constrained, nucleosome-free DNA molecules. Biochemistry. 1994 Nov 29;33(47):14177–14184. doi: 10.1021/bi00251a029. [DOI] [PubMed] [Google Scholar]
  35. Robinson H., Wang A. H. Neomycin, spermine and hexaamminecobalt (III) share common structural motifs in converting B- to A-DNA. Nucleic Acids Res. 1996 Feb 15;24(4):676–682. doi: 10.1093/nar/24.4.676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Schellman J. A., Parthasarathy N. X-ray diffraction studies on cation-collapsed DNA. J Mol Biol. 1984 May 25;175(3):313–329. doi: 10.1016/0022-2836(84)90351-6. [DOI] [PubMed] [Google Scholar]
  37. Shore D. RAP1: a protean regulator in yeast. Trends Genet. 1994 Nov;10(11):408–412. doi: 10.1016/0168-9525(94)90058-2. [DOI] [PubMed] [Google Scholar]
  38. Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sprecher C. A., Baase W. A., Johnson W. C., Jr Conformation and circular dichroism of DNA. Biopolymers. 1979 Apr;18(4):1009–1019. doi: 10.1002/bip.1979.360180418. [DOI] [PubMed] [Google Scholar]
  40. Thomas T. J., Bloomfield V. A. Collapse of DNA caused by trivalent cations: pH and ionic specificity effects. Biopolymers. 1983 Apr;22(4):1097–1106. doi: 10.1002/bip.360220407. [DOI] [PubMed] [Google Scholar]
  41. Thomas T. J., Bloomfield V. A. Ionic and structural effects on the thermal helix-coil transition of DNA complexed with natural and synthetic polyamines. Biopolymers. 1984 Jul;23(7):1295–1306. doi: 10.1002/bip.360230713. [DOI] [PubMed] [Google Scholar]
  42. Thomas T. J., Bloomfield V. A. Toroidal condensation of Z DNA and identification of an intermediate in the B to Z transition of poly(dG-m5dC) X poly(dG-m5dC). Biochemistry. 1985 Jan 29;24(3):713–719. doi: 10.1021/bi00324a026. [DOI] [PubMed] [Google Scholar]
  43. Wahl M. C., Sundaralingam M. Crystal structures of A-DNA duplexes. Biopolymers. 1997;44(1):45–63. doi: 10.1002/(SICI)1097-0282(1997)44:1<45::AID-BIP4>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  44. Wellinger R. J., Wolf A. J., Zakian V. A. Saccharomyces telomeres acquire single-strand TG1-3 tails late in S phase. Cell. 1993 Jan 15;72(1):51–60. doi: 10.1016/0092-8674(93)90049-v. [DOI] [PubMed] [Google Scholar]
  45. Widom J., Baldwin R. L. Cation-induced toroidal condensation of DNA studies with Co3+(NH3)6. J Mol Biol. 1980 Dec 25;144(4):431–453. doi: 10.1016/0022-2836(80)90330-7. [DOI] [PubMed] [Google Scholar]
  46. Widom J., Baldwin R. L. Monomolecular condensation of lambda-DNA induced by cobalt hexamine. Biopolymers. 1983 Jun;22(6):1595–1620. doi: 10.1002/bip.360220612. [DOI] [PubMed] [Google Scholar]
  47. Williamson J. R., Raghuraman M. K., Cech T. R. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell. 1989 Dec 1;59(5):871–880. doi: 10.1016/0092-8674(89)90610-7. [DOI] [PubMed] [Google Scholar]
  48. Wilson R. W., Bloomfield V. A. Counterion-induced condesation of deoxyribonucleic acid. a light-scattering study. Biochemistry. 1979 May 29;18(11):2192–2196. doi: 10.1021/bi00578a009. [DOI] [PubMed] [Google Scholar]
  49. Xu Q., Shoemaker R. K., Braunlin W. H. Induction of B-A transitions of deoxyoligonucleotides by multivalent cations in dilute aqueous solution. Biophys J. 1993 Sep;65(3):1039–1049. doi: 10.1016/S0006-3495(93)81163-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES