Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):1640–1653. doi: 10.1016/S0006-3495(98)77877-4

Mathematical modeling and fluorescence imaging to study the Ca2+ turnover in skinned muscle fibers.

D Uttenweiler 1, C Weber 1, R H Fink 1
PMCID: PMC1299511  PMID: 9545029

Abstract

A mathematical model was developed for the simulation of the spatial and temporal time course of Ca2+ ion movement in caffeine-induced calcium transients of chemically skinned muscle fiber preparations. Our model assumes cylindrical symmetry and quantifies the radial profile of Ca2+ ion concentration by solving the diffusion equations for Ca2+ ions and various mobile buffers, and the rate equations for Ca2+ buffering (mobile and immobile buffers) and for the release and reuptake of Ca2+ ions by the sarcoplasmic reticulum (SR), with a finite-difference algorithm. The results of the model are compared with caffeine-induced spatial Ca2+ transients obtained from saponin skinned murine fast-twitch fibers by fluorescence photometry and imaging measurements using the ratiometric dye Fura-2. The combination of mathematical modeling and digital image analysis provides a tool for the quantitative description of the total Ca2+ turnover and the different contributions of all interacting processes to the overall Ca2+ transient in skinned muscle fibers. It should thereby strongly improve the usage of skinned fibers as quantitative assay systems for many parameters of the SR and the contractile apparatus helping also to bridge the gap to the intact muscle fiber.

Full Text

The Full Text of this article is available as a PDF (466.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allbritton N. L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science. 1992 Dec 11;258(5089):1812–1815. doi: 10.1126/science.1465619. [DOI] [PubMed] [Google Scholar]
  2. Campbell K. P., Franzini-Armstrong C., Shamoo A. E. Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the 'sarcoplasmic reticulum feet' associated with heavy sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1980 Oct 16;602(1):97–116. doi: 10.1016/0005-2736(80)90293-x. [DOI] [PubMed] [Google Scholar]
  3. Cannell M. B., Allen D. G. Model of calcium movements during activation in the sarcomere of frog skeletal muscle. Biophys J. 1984 May;45(5):913–925. doi: 10.1016/S0006-3495(84)84238-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donoso P., Prieto H., Hidalgo C. Luminal calcium regulates calcium release in triads isolated from frog and rabbit skeletal muscle. Biophys J. 1995 Feb;68(2):507–515. doi: 10.1016/S0006-3495(95)80212-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Du G. G., Ashley C. C., Lea T. J. Effects of thapsigargin and cyclopiazonic acid on the sarcoplasmic reticulum Ca2+ pump of skinned fibres from frog skeletal muscle. Pflugers Arch. 1994 Dec;429(2):169–175. doi: 10.1007/BF00374309. [DOI] [PubMed] [Google Scholar]
  6. Dulhunty A. F. The voltage-activation of contraction in skeletal muscle. Prog Biophys Mol Biol. 1992;57(3):181–223. doi: 10.1016/0079-6107(92)90024-z. [DOI] [PubMed] [Google Scholar]
  7. Duty S., Allen D. G. The distribution of intracellular calcium concentration in isolated single fibres of mouse skeletal muscle during fatiguing stimulation. Pflugers Arch. 1994 May;427(1-2):102–109. doi: 10.1007/BF00585948. [DOI] [PubMed] [Google Scholar]
  8. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  9. Endo M., Iino M. Measurement of Ca2+ release in skinned fibers from skeletal muscle. Methods Enzymol. 1988;157:12–26. doi: 10.1016/0076-6879(88)57064-7. [DOI] [PubMed] [Google Scholar]
  10. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  11. Fink R. H., Stephenson D. G. Ca2+-movements in muscle modulated by the state of K+-channels in the sarcoplasmic reticulum membranes. Pflugers Arch. 1987 Aug;409(4-5):374–380. doi: 10.1007/BF00583791. [DOI] [PubMed] [Google Scholar]
  12. Fink R. H., Stephenson D. G., Williams D. A. Potassium and ionic strength effects on the isometric force of skinned twitch muscle fibres of the rat and toad. J Physiol. 1986 Jan;370:317–337. doi: 10.1113/jphysiol.1986.sp015937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fink R. H., Veigel C. Calcium uptake and release modulated by counter-ion conductances in the sarcoplasmic reticulum of skeletal muscle. Acta Physiol Scand. 1996 Mar;156(3):387–396. doi: 10.1046/j.1365-201X.1996.212000.x. [DOI] [PubMed] [Google Scholar]
  14. Gillis J. M. Relaxation of vertebrate skeletal muscle. A synthesis of the biochemical and physiological approaches. Biochim Biophys Acta. 1985 Jun 3;811(2):97–145. doi: 10.1016/0304-4173(85)90016-3. [DOI] [PubMed] [Google Scholar]
  15. Gillis J. M., Thomason D., Lefèvre J., Kretsinger R. H. Parvalbumins and muscle relaxation: a computer simulation study. J Muscle Res Cell Motil. 1982 Dec;3(4):377–398. doi: 10.1007/BF00712090. [DOI] [PubMed] [Google Scholar]
  16. Godt R. E., Lindley B. D. Influence of temperature upon contractile activation and isometric force production in mechanically skinned muscle fibers of the frog. J Gen Physiol. 1982 Aug;80(2):279–297. doi: 10.1085/jgp.80.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Kargacin G. J. Calcium signaling in restricted diffusion spaces. Biophys J. 1994 Jul;67(1):262–272. doi: 10.1016/S0006-3495(94)80477-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lamb G. D., Posterino G. S., Stephenson D. G. Effects of heparin on excitation-contraction coupling in skeletal muscle toad and rat. J Physiol. 1994 Jan 15;474(2):319–329. doi: 10.1113/jphysiol.1994.sp020024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lamb G. D., Stephenson D. G. Calcium release in skinned muscle fibres of the toad by transverse tubule depolarization or by direct stimulation. J Physiol. 1990 Apr;423:495–517. doi: 10.1113/jphysiol.1990.sp018036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Makabe M., Werner O., Fink R. H. The contribution of the sarcoplasmic reticulum Ca2+-transport ATPase to caffeine-induced Ca2+ transients of murine skinned skeletal muscle fibres. Pflugers Arch. 1996 Aug;432(4):717–726. doi: 10.1007/s004240050190. [DOI] [PubMed] [Google Scholar]
  23. Melzer W., Herrmann-Frank A., Lüttgau H. C. The role of Ca2+ ions in excitation-contraction coupling of skeletal muscle fibres. Biochim Biophys Acta. 1995 May 8;1241(1):59–116. doi: 10.1016/0304-4157(94)00014-5. [DOI] [PubMed] [Google Scholar]
  24. Pape P. C., Jong D. S., Chandler W. K. Calcium release and its voltage dependence in frog cut muscle fibers equilibrated with 20 mM EGTA. J Gen Physiol. 1995 Aug;106(2):259–336. doi: 10.1085/jgp.106.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Robertson S. P., Johnson J. D., Potter J. D. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981 Jun;34(3):559–569. doi: 10.1016/S0006-3495(81)84868-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shirokova N., Ríos E. Activation of Ca2+ release by caffeine and voltage in frog skeletal muscle. J Physiol. 1996 Jun 1;493(Pt 2):317–339. doi: 10.1113/jphysiol.1996.sp021386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Smith G. D., Wagner J., Keizer J. Validity of the rapid buffering approximation near a point source of calcium ions. Biophys J. 1996 Jun;70(6):2527–2539. doi: 10.1016/S0006-3495(96)79824-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Steele D. S., McAinsh A. M., Smith G. L. Comparative effects of inorganic phosphate and oxalate on uptake and release of Ca2+ by the sarcoplasmic reticulum in saponin skinned rat cardiac trabeculae. J Physiol. 1996 Feb 1;490(Pt 3):565–576. doi: 10.1113/jphysiol.1996.sp021167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stephenson E. W. Excitation of skinned muscle fibers by imposed ion gradients. II. Influence of quercetin and ATP removal on the Ca2+-insensitive component of stimulated 45Ca efflux. J Gen Physiol. 1985 Dec;86(6):833–852. doi: 10.1085/jgp.86.6.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stienen G. J., Zaremba R., Elzinga G. ATP utilization for calcium uptake and force production in skinned muscle fibres of Xenopus laevis. J Physiol. 1995 Jan 1;482(Pt 1):109–122. doi: 10.1113/jphysiol.1995.sp020503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Veigel C., Steubing R. W., Harim A., Weber C., Greulich K. O., Fink R. H. New cell biological applications of the laser microbeam technique: the microdissection and skinning of muscle fibers and the perforation and fusion of sarcolemma vesicles. Eur J Cell Biol. 1994 Feb;63(1):140–148. [PubMed] [Google Scholar]
  32. Wagner J., Keizer J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophys J. 1994 Jul;67(1):447–456. doi: 10.1016/S0006-3495(94)80500-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Zhao M., Hollingworth S., Baylor S. M. Properties of tri- and tetracarboxylate Ca2+ indicators in frog skeletal muscle fibers. Biophys J. 1996 Feb;70(2):896–916. doi: 10.1016/S0006-3495(96)79633-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES