Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):1708–1721. doi: 10.1016/S0006-3495(98)77882-8

Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations.

C M Soares 1, P J Martel 1, J Mendes 1, M A Carrondo 1
PMCID: PMC1299516  PMID: 9545034

Abstract

The tetraheme cytochrome c3 from Desulfovibrio vulgaris Hildenborough is studied using molecular dynamics simulation studies in explicit solvent. The high heme content of the protein, which has its core almost entirely made up of c-type heme, presents specific problems in the simulation. Instability in the structure is observed in long simulations above 1 ns, something that does not occur in a monoheme cytochrome, suggesting problems in heme parametrization. Given these stability problems, a partially restrained model, which avoids destruction of the structure, was created with the objective of performing free energy calculations of heme reduction, studies that require long simulations. With this model, the free energy of reduction of each individual heme was calculated. A correction in the long-range electrostatic interactions of charge groups belonging to the redox centers had to be made in order to make the system physically meaningful. Correlation is obtained between the calculated free energies and the experimental data for three of four hemes. However, the relative scale of the calculated energies is different from the scale of the experimental free energies. Reasons for this are discussed. In addition to the free energy calculations, this model allows the study of conformational changes upon reduction. Even if the precise details of the structural changes that take place in this system upon individual heme reduction are probably out of the reach of this study, it appears that these structural changes are small, similarly to what is observed for other redox proteins. This does not mean that their effect is minor, and one example is the conformational change observed in propionate D from heme I when heme II becomes reduced. A motion of this kind could be the basis of the experimentally observed cooperativity effects between heme reduction, namely positive cooperativity.

Full Text

The Full Text of this article is available as a PDF (330.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aqvist J., Medina C., Samuelsson J. E. A new method for predicting binding affinity in computer-aided drug design. Protein Eng. 1994 Mar;7(3):385–391. doi: 10.1093/protein/7.3.385. [DOI] [PubMed] [Google Scholar]
  2. Badziong W., Thauer R. K. Growth yields and growth rates of Desulfovibrio vulgaris (Marburg) growing on hydrogen plus sulfate and hydrogen plus thiosulfate as the sole energy sources. Arch Microbiol. 1978 May 30;117(2):209–214. doi: 10.1007/BF00402310. [DOI] [PubMed] [Google Scholar]
  3. Badziong W., Thauer R. K., Zeikus J. G. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol. 1978 Jan 23;116(1):41–49. doi: 10.1007/BF00408732. [DOI] [PubMed] [Google Scholar]
  4. Baptista A. M., Martel P. J., Petersen S. B. Simulation of protein conformational freedom as a function of pH: constant-pH molecular dynamics using implicit titration. Proteins. 1997 Apr;27(4):523–544. [PubMed] [Google Scholar]
  5. Berghuis A. M., Brayer G. D. Oxidation state-dependent conformational changes in cytochrome c. J Mol Biol. 1992 Feb 20;223(4):959–976. doi: 10.1016/0022-2836(92)90255-i. [DOI] [PubMed] [Google Scholar]
  6. Berghuis A. M., Guillemette J. G., McLendon G., Sherman F., Smith M., Brayer G. D. The role of a conserved internal water molecule and its associated hydrogen bond network in cytochrome c. J Mol Biol. 1994 Feb 25;236(3):786–799. doi: 10.1006/jmbi.1994.1189. [DOI] [PubMed] [Google Scholar]
  7. Bertrand P., Mbarki O., Asso M., Blanchard L., Guerlesquin F., Tegoni M. Control of the redox potential in c-type cytochromes: importance of the entropic contribution. Biochemistry. 1995 Sep 5;34(35):11071–11079. doi: 10.1021/bi00035a012. [DOI] [PubMed] [Google Scholar]
  8. Björkstén J., Soares C. M., Nilsson O., Tapia O. On the stability and plastic properties of the interior L3 loop in R. capsulatus porin. A molecular dynamics study. Protein Eng. 1994 Apr;7(4):487–493. doi: 10.1093/protein/7.4.487. [DOI] [PubMed] [Google Scholar]
  9. Blackledge M. J., Guerlesquin F., Marion D. Comparison of low oxidoreduction potential cytochrome c553 from Desulfovibrio vulgaris with the class I cytochrome c family. Proteins. 1996 Feb;24(2):178–194. doi: 10.1002/(SICI)1097-0134(199602)24:2<178::AID-PROT5>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  10. Churg A. K., Warshel A. Control of the redox potential of cytochrome c and microscopic dielectric effects in proteins. Biochemistry. 1986 Apr 8;25(7):1675–1681. doi: 10.1021/bi00355a035. [DOI] [PubMed] [Google Scholar]
  11. Coutinho I. B., Xavier A. V. Tetraheme cytochromes. Methods Enzymol. 1994;243:119–140. doi: 10.1016/0076-6879(94)43011-x. [DOI] [PubMed] [Google Scholar]
  12. Czjzek M., Payan F., Guerlesquin F., Bruschi M., Haser R. Crystal structure of cytochrome c3 from Desulfovibrio desulfuricans Norway at 1.7 A resolution. J Mol Biol. 1994 Nov 4;243(4):653–667. doi: 10.1016/0022-2836(94)90039-6. [DOI] [PubMed] [Google Scholar]
  13. Frazão C., Soares C. M., Carrondo M. A., Pohl E., Dauter Z., Wilson K. S., Hervás M., Navarro J. A., De la Rosa M. A., Sheldrick G. M. Ab initio determination of the crystal structure of cytochrome c6 and comparison with plastocyanin. Structure. 1995 Nov 15;3(11):1159–1169. doi: 10.1016/s0969-2126(01)00252-0. [DOI] [PubMed] [Google Scholar]
  14. Gane P. J., Freedman R. B., Warwicker J. A molecular model for the redox potential difference between thioredoxin and DsbA, based on electrostatics calculations. J Mol Biol. 1995 Jun 2;249(2):376–387. doi: 10.1006/jmbi.1995.0303. [DOI] [PubMed] [Google Scholar]
  15. Gunner M. R., Honig B. Electrostatic control of midpoint potentials in the cytochrome subunit of the Rhodopseudomonas viridis reaction center. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9151–9155. doi: 10.1073/pnas.88.20.9151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Higuchi Y., Kusunoki M., Matsuura Y., Yasuoka N., Kakudo M. Refined structure of cytochrome c3 at 1.8 A resolution. J Mol Biol. 1984 Jan 5;172(1):109–139. doi: 10.1016/0022-2836(84)90417-0. [DOI] [PubMed] [Google Scholar]
  17. Hobbs J. D., Shelnutt J. A. Conserved nonplanar heme distortions in cytochromes c. J Protein Chem. 1995 Jan;14(1):19–25. doi: 10.1007/BF01902840. [DOI] [PubMed] [Google Scholar]
  18. Jensen G. M., Warshel A., Stephens P. J. Calculation of the redox potentials of iron-sulfur proteins: the 2-/3-couple of [Fe4S*4Cys4] clusters in Peptococcus aerogenes ferredoxin, Azotobacter vinelandii ferredoxin I, and Chromatium vinosum high-potential iron protein. Biochemistry. 1994 Sep 13;33(36):10911–10924. doi: 10.1021/bi00202a010. [DOI] [PubMed] [Google Scholar]
  19. Lancaster C. R., Michel H., Honig B., Gunner M. R. Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis. Biophys J. 1996 Jun;70(6):2469–2492. doi: 10.1016/S0006-3495(96)79820-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leenders R., van Gunsteren W. F., Berendsen H. J., Visser A. J. Molecular dynamics simulations of oxidized and reduced Clostridium beijerinckii flavodoxin. Biophys J. 1994 Mar;66(3 Pt 1):634–645. doi: 10.1016/s0006-3495(94)80837-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lo T. P., Komar-Panicucci S., Sherman F., McLendon G., Brayer G. D. Structural and functional effects of multiple mutations at distal sites in cytochrome c. Biochemistry. 1995 Apr 18;34(15):5259–5268. doi: 10.1021/bi00015a041. [DOI] [PubMed] [Google Scholar]
  22. Mark A. E., van Gunsteren W. F. Decomposition of the free energy of a system in terms of specific interactions. Implications for theoretical and experimental studies. J Mol Biol. 1994 Jul 8;240(2):167–176. doi: 10.1006/jmbi.1994.1430. [DOI] [PubMed] [Google Scholar]
  23. Matias P. M., Frazão C., Morais J., Coll M., Carrondo M. A. Structure analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 1.9 A resolution. J Mol Biol. 1993 Dec 5;234(3):680–699. doi: 10.1006/jmbi.1993.1620. [DOI] [PubMed] [Google Scholar]
  24. Matias P. M., Morais J., Coelho R., Carrondo M. A., Wilson K., Dauter Z., Sieker L. Cytochrome c3 from Desulfovibrio gigas: crystal structure at 1.8 A resolution and evidence for a specific calcium-binding site. Protein Sci. 1996 Jul;5(7):1342–1354. doi: 10.1002/pro.5560050713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moore G. R., Pettigrew G. W., Rogers N. K. Factors influencing redox potentials of electron transfer proteins. Proc Natl Acad Sci U S A. 1986 Jul;83(14):4998–4999. doi: 10.1073/pnas.83.14.4998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morais J., Palma P. N., Frazão C., Caldeira J., LeGall J., Moura I., Moura J. J., Carrondo M. A. Structure of the tetraheme cytochrome from Desulfovibrio desulfuricans ATCC 27774: X-ray diffraction and electron paramagnetic resonance studies. Biochemistry. 1995 Oct 3;34(39):12830–12841. doi: 10.1021/bi00039a044. [DOI] [PubMed] [Google Scholar]
  27. Nilsson O. Molecular conformational space analysis using computer graphics: going beyond FRODO. J Mol Graph. 1990 Dec;8(4):192-200, 212-3. doi: 10.1016/0263-7855(90)80002-w. [DOI] [PubMed] [Google Scholar]
  28. Papa S., Guerrieri F., Izzo G. Redox Bohr-effects in the cytochrome system of mitochondria. FEBS Lett. 1979 Sep 15;105(2):213–216. doi: 10.1016/0014-5793(79)80614-6. [DOI] [PubMed] [Google Scholar]
  29. Reynolds C. A., King P. M., Richards W. G. Computed redox potentials and the design of bioreductive agents. Nature. 1988 Jul 7;334(6177):80–82. doi: 10.1038/334080a0. [DOI] [PubMed] [Google Scholar]
  30. Salgueiro C. A., Turner D. L., Santos H., LeGall J., Xavier A. V. Assignment of the redox potentials to the four haems in Desulfovibrio vulgaris cytochrome c3 by 2D-NMR. FEBS Lett. 1992 Dec 14;314(2):155–158. doi: 10.1016/0014-5793(92)80963-h. [DOI] [PubMed] [Google Scholar]
  31. Shenoy V. S., Ichiye T. Influence of protein flexibility on the redox potential of rubredoxin: energy minimization studies. Proteins. 1993 Oct;17(2):152–160. doi: 10.1002/prot.340170205. [DOI] [PubMed] [Google Scholar]
  32. Smith L. J., Mark A. E., Dobson C. M., van Gunsteren W. F. Comparison of MD simulations and NMR experiments for hen lysozyme. Analysis of local fluctuations, cooperative motions, and global changes. Biochemistry. 1995 Aug 29;34(34):10918–10931. doi: 10.1021/bi00034a026. [DOI] [PubMed] [Google Scholar]
  33. Soares C. M., Björkstén J., Tapia O. L3 loop-mediated mechanisms of pore closing in porin: a molecular dynamics perturbation approach. Protein Eng. 1995 Jan;8(1):5–12. doi: 10.1093/protein/8.1.5. [DOI] [PubMed] [Google Scholar]
  34. Takano T., Dickerson R. E. Conformation change of cytochrome c. I. Ferrocytochrome c structure refined at 1.5 A resolution. J Mol Biol. 1981 Nov 25;153(1):79–94. doi: 10.1016/0022-2836(81)90528-3. [DOI] [PubMed] [Google Scholar]
  35. Takano T., Dickerson R. E. Conformation change of cytochrome c. II. Ferricytochrome c refinement at 1.8 A and comparison with the ferrocytochrome structure. J Mol Biol. 1981 Nov 25;153(1):95–115. doi: 10.1016/0022-2836(81)90529-5. [DOI] [PubMed] [Google Scholar]
  36. Turner D. L., Salgueiro C. A., Catarino T., LeGall J., Xavier A. V. Homotropic and heterotropic cooperativity in the tetrahaem cytochrome c3 from Desulfovibrio vulgaris. Biochim Biophys Acta. 1994 Aug 30;1187(2):232–235. doi: 10.1016/0005-2728(94)90117-1. [DOI] [PubMed] [Google Scholar]
  37. Turner D. L., Salgueiro C. A., Catarino T., Legall J., Xavier A. V. NMR studies of cooperativity in the tetrahaem cytochrome c3 from Desulfovibrio vulgaris. Eur J Biochem. 1996 Nov 1;241(3):723–731. doi: 10.1111/j.1432-1033.1996.00723.x. [DOI] [PubMed] [Google Scholar]
  38. Watt W., Tulinsky A., Swenson R. P., Watenpaugh K. D. Comparison of the crystal structures of a flavodoxin in its three oxidation states at cryogenic temperatures. J Mol Biol. 1991 Mar 5;218(1):195–208. doi: 10.1016/0022-2836(91)90884-9. [DOI] [PubMed] [Google Scholar]
  39. Yelle R. B., Park N. S., Ichiye T. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions. Proteins. 1995 Jun;22(2):154–167. doi: 10.1002/prot.340220208. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES