Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):1722–1731. doi: 10.1016/S0006-3495(98)77883-X

Glucose diffusion in pancreatic islets of Langerhans.

R Bertram 1, M Pernarowski 1
PMCID: PMC1299517  PMID: 9545035

Abstract

We investigate the time required for glucose to diffuse through an isolated pancreatic islet of Langerhans and reach an equilibrium. This question is relevant in the context of in vitro electrophysiological studies of the response of an islet to step changes in the bath glucose concentration. Islet cells are electrically coupled by gap junctions, so nonuniformities in islet glucose concentration may be reflected in the activity of cells on the islet periphery, where electrical recordings are made. Using a mathematical model of hindered glucose diffusion, we investigate the effects of the islet porosity and the permeability of a surrounding layer of acinar cells. A major factor in the determination of the equilibrium time is the transport of glucose into islet beta-cells, which removes glucose from the interstitial spaces where diffusion occurs. This transport is incorporated by using a model of the GLUT-2 glucose transporter. We find that several minutes are required for the islet to equilibrate to a 10 mM change in bath glucose, a typical protocol in islet experiments. It is therefore likely that in electrophysiological islet experiments the glucose distribution is nonuniform for several minutes after a step change in bath glucose. The delay in glucose penetration to the inner portions of the islet may be a major contributing factor to the 1-2-min delay in islet electrical activity typically observed after bath application of a stimulatory concentration of glucose.

Full Text

The Full Text of this article is available as a PDF (121.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft F. M., Harrison D. E., Ashcroft S. J. Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. 1984 Nov 29-Dec 5Nature. 312(5993):446–448. doi: 10.1038/312446a0. [DOI] [PubMed] [Google Scholar]
  2. Atwater I., Goncalves A., Herchuelz A., Lebrun P., Malaisse W. J., Rojas E., Scott A. Cooling dissociates glucose-induced insulin release from electrical activity and cation fluxes in rodent pancreatic islets. J Physiol. 1984 Mar;348:615–627. doi: 10.1113/jphysiol.1984.sp015129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett B. D., Jetton T. L., Ying G., Magnuson M. A., Piston D. W. Quantitative subcellular imaging of glucose metabolism within intact pancreatic islets. J Biol Chem. 1996 Feb 16;271(7):3647–3651. doi: 10.1074/jbc.271.7.3647. [DOI] [PubMed] [Google Scholar]
  4. Bonner-Weir S. Morphological evidence for pancreatic polarity of beta-cell within islets of Langerhans. Diabetes. 1988 May;37(5):616–621. doi: 10.2337/diab.37.5.616. [DOI] [PubMed] [Google Scholar]
  5. Bozem M., Henquin J. C. Glucose modulation of spike activity independently from changes in slow waves of membrane potential in mouse B-cells. Pflugers Arch. 1988 Dec;413(2):147–152. doi: 10.1007/BF00582524. [DOI] [PubMed] [Google Scholar]
  6. Chow R. H., Lund P. E., Löser S., Panten U., Gylfe E. Coincidence of early glucose-induced depolarization with lowering of cytoplasmic Ca2+ in mouse pancreatic beta-cells. J Physiol. 1995 Jun 15;485(Pt 3):607–617. doi: 10.1113/jphysiol.1995.sp020756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cook D. L., Perara E. Islet electrical pacemaker response to alpha-adrenergic stimulation. Diabetes. 1982 Nov;31(11):985–990. doi: 10.2337/diacare.31.11.985. [DOI] [PubMed] [Google Scholar]
  8. Dean P. M., Matthews E. K. Glucose-induced electrical activity in pancreatic islet cells. J Physiol. 1970 Sep;210(2):255–264. doi: 10.1113/jphysiol.1970.sp009207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eddlestone G. T., Gonçalves A., Bangham J. A., Rojas E. Electrical coupling between cells in islets of Langerhans from mouse. J Membr Biol. 1984;77(1):1–14. doi: 10.1007/BF01871095. [DOI] [PubMed] [Google Scholar]
  10. Gilon P., Henquin J. C. Influence of membrane potential changes on cytoplasmic Ca2+ concentration in an electrically excitable cell, the insulin-secreting pancreatic B-cell. J Biol Chem. 1992 Oct 15;267(29):20713–20720. [PubMed] [Google Scholar]
  11. Heimberg H., De Vos A., Pipeleers D., Thorens B., Schuit F. Differences in glucose transporter gene expression between rat pancreatic alpha- and beta-cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem. 1995 Apr 14;270(15):8971–8975. doi: 10.1074/jbc.270.15.8971. [DOI] [PubMed] [Google Scholar]
  12. Henquin J. C., Garcia M. C., Bozem M., Hermans M. P., Nenquin M. Muscarinic control of pancreatic B cell function involves sodium-dependent depolarization and calcium influx. Endocrinology. 1988 May;122(5):2134–2142. doi: 10.1210/endo-122-5-2134. [DOI] [PubMed] [Google Scholar]
  13. Johnson J. H., Newgard C. B., Milburn J. L., Lodish H. F., Thorens B. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J Biol Chem. 1990 Apr 25;265(12):6548–6551. [PubMed] [Google Scholar]
  14. Larsson O., Kindmark H., Brandstrom R., Fredholm B., Berggren P. O. Oscillations in KATP channel activity promote oscillations in cytoplasmic free Ca2+ concentration in the pancreatic beta cell. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5161–5165. doi: 10.1073/pnas.93.10.5161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liu Y. J., Grapengiesser E., Gylfe E., Hellman B. Glucose-induced oscillations of Ba2+ in pancreatic beta-cells occur without involvement of intracellular mobilization. Arch Biochem Biophys. 1994 Dec;315(2):387–392. doi: 10.1006/abbi.1994.1515. [DOI] [PubMed] [Google Scholar]
  16. Maki L. W., Keizer J. Analysis of possible mechanisms for in vitro oscillations of insulin secretion. Am J Physiol. 1995 Mar;268(3 Pt 1):C780–C791. doi: 10.1152/ajpcell.1995.268.3.C780. [DOI] [PubMed] [Google Scholar]
  17. Nilsson T., Schultz V., Berggren P. O., Corkey B. E., Tornheim K. Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic beta-cells. Biochem J. 1996 Feb 15;314(Pt 1):91–94. doi: 10.1042/bj3140091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Perez-Armendariz E., Atwater I., Rojas E. Glucose-induced oscillatory changes in extracellular ionized potassium concentration in mouse islets of Langerhans. Biophys J. 1985 Nov;48(5):741–749. doi: 10.1016/S0006-3495(85)83832-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rieske E., Schubert P., Kreutzberg G. W. Transfer of radioactive material between electrically coupled neurons of the leech central nervous system. Brain Res. 1975 Feb 14;84(3):365–382. doi: 10.1016/0006-8993(75)90759-3. [DOI] [PubMed] [Google Scholar]
  20. Santos R. M., Rosario L. M., Nadal A., Garcia-Sancho J., Soria B., Valdeolmillos M. Widespread synchronous [Ca2+]i oscillations due to bursting electrical activity in single pancreatic islets. Pflugers Arch. 1991 May;418(4):417–422. doi: 10.1007/BF00550880. [DOI] [PubMed] [Google Scholar]
  21. Scott A. M., Atwater I., Rojas E. A method for the simultaneous measurement of insulin release and B cell membrane potential in single mouse islets of Langerhans. Diabetologia. 1981 Nov;21(5):470–475. doi: 10.1007/BF00257788. [DOI] [PubMed] [Google Scholar]
  22. Smith P. A., Ashcroft F. M., Rorsman P. Simultaneous recordings of glucose dependent electrical activity and ATP-regulated K(+)-currents in isolated mouse pancreatic beta-cells. FEBS Lett. 1990 Feb 12;261(1):187–190. doi: 10.1016/0014-5793(90)80667-8. [DOI] [PubMed] [Google Scholar]
  23. Smolen P., Rinzel J., Sherman A. Why pancreatic islets burst but single beta cells do not. The heterogeneity hypothesis. Biophys J. 1993 Jun;64(6):1668–1680. doi: 10.1016/S0006-3495(93)81539-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Soria B., Martín F., Andreu E., Sanchez-Andrés J. V., Nacher V., Montana E. Diminished fraction of blockable ATP-sensitive K+ channels in islets transplanted into diabetic mice. Diabetes. 1996 Dec;45(12):1755–1760. doi: 10.2337/diab.45.12.1755. [DOI] [PubMed] [Google Scholar]
  25. Sánchez-Andrés J. V., Gomis A., Valdeolmillos M. The electrical activity of mouse pancreatic beta-cells recorded in vivo shows glucose-dependent oscillations. J Physiol. 1995 Jul 1;486(Pt 1):223–228. doi: 10.1113/jphysiol.1995.sp020804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Unger R. H. Diabetic hyperglycemia: link to impaired glucose transport in pancreatic beta cells. Science. 1991 Mar 8;251(4998):1200–1205. doi: 10.1126/science.2006409. [DOI] [PubMed] [Google Scholar]
  27. Valdeolmillos M., Nadal A., Contreras D., Soria B. The relationship between glucose-induced K+ATP channel closure and the rise in [Ca2+]i in single mouse pancreatic beta-cells. J Physiol. 1992 Sep;455:173–186. doi: 10.1113/jphysiol.1992.sp019295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whitesell R. R., Powers A. C., Regen D. M., Abumrad N. A. Transport and metabolism of glucose in an insulin-secreting cell line, beta TC-1. Biochemistry. 1991 Dec 10;30(49):11560–11566. doi: 10.1021/bi00113a011. [DOI] [PubMed] [Google Scholar]
  29. Worley J. F., 3rd, McIntyre M. S., Spencer B., Mertz R. J., Roe M. W., Dukes I. D. Endoplasmic reticulum calcium store regulates membrane potential in mouse islet beta-cells. J Biol Chem. 1994 May 20;269(20):14359–14362. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES