Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):1850–1863. doi: 10.1016/S0006-3495(98)77895-6

Mechanism of anode break stimulation in the heart.

R Ranjan 1, N Chiamvimonvat 1, N V Thakor 1, G F Tomaselli 1, E Marban 1
PMCID: PMC1299529  PMID: 9545047

Abstract

Anodal stimulation is routinely observed in cardiac tissue, but only recently has a mechanism been proposed. The bidomain cardiac tissue model proposes that virtual cathodes induced at sites distant from the electrode initiate the depolarization. In contrast, none of the existing cardiac action potential models (Luo-Rudy phase I and II, or Oxsoft) predict anodal stimulation at the single-cell level. To determine whether anodal stimulation has a cellular basis, we measured membrane potential and membrane current in mammalian ventricular myocytes by using whole-cell patch clamp. Anode break responses can be readily elicited in single ventricular cells. The basis of this anodal stimulation in single cells is recruitment of the hyperpolarization-activated inward current I(f). The threshold of activation for I(f) is -80 mV in rat cells and -120 mV in guinea pig or canine cells. Persistent I(f) "tail" current upon release of the hyperpolarization drives the transmembrane potential toward the threshold of sodium channels, initiating an action potential. Time-dependent block of the inward rectifier, I(K1), at hyperpolarized potentials decreases membrane conductance and thereby potentiates the ability of I(f) to depolarize the cell on the break of an anodal pulse. Inclusion of I(f), as well as the block and unblock kinetics of I(K1), in the existing Luo-Rudy action potential model faithfully reproduces anode break stimulation. Thus active cellular properties suffice to explain anode break stimulation in cardiac tissue.

Full Text

The Full Text of this article is available as a PDF (211.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beeler G. W., Jr, Reuter H. Voltage clamp experiments on ventricular myocarial fibres. J Physiol. 1970 Mar;207(1):165–190. doi: 10.1113/jphysiol.1970.sp009055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beeler G. W., Reuter H. Reconstruction of the action potential of ventricular myocardial fibres. J Physiol. 1977 Jun;268(1):177–210. doi: 10.1113/jphysiol.1977.sp011853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Benndorf K., Boldt W., Nilius B. Sodium current in single myocardial mouse cells. Pflugers Arch. 1985 May;404(2):190–196. doi: 10.1007/BF00585418. [DOI] [PubMed] [Google Scholar]
  4. Berman M. F., Camardo J. S., Robinson R. B., Siegelbaum S. A. Single sodium channels from canine ventricular myocytes: voltage dependence and relative rates of activation and inactivation. J Physiol. 1989 Aug;415:503–531. doi: 10.1113/jphysiol.1989.sp017734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Biermans G., Vereecke J., Carmeliet E. Effect of external K on the block of the inward rectifier during hyperpolarization in guinea-pig ventricular myocytes by external Na. Biomed Biochim Acta. 1989;48(5-6):S358–S363. [PubMed] [Google Scholar]
  6. Biermans G., Vereecke J., Carmeliet E. The mechanism of the inactivation of the inward-rectifying K current during hyperpolarizing steps in guinea-pig ventricular myocytes. Pflugers Arch. 1987 Dec;410(6):604–613. doi: 10.1007/BF00581320. [DOI] [PubMed] [Google Scholar]
  7. Bodewei R., Hering S., Lemke B., Rosenshtraukh L. V., Undrovinas A. I., Wollenberger A. Characterization of the fast sodium current in isolated rat myocardial cells: simulation of the clamped membrane potential. J Physiol. 1982 Apr;325:301–315. doi: 10.1113/jphysiol.1982.sp014151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown A. M., Lee K. S., Powell T. Sodium current in single rat heart muscle cells. J Physiol. 1981 Sep;318:479–500. doi: 10.1113/jphysiol.1981.sp013879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. CRANEFIELD P. F., HOFFMAN B. F., SIEBENS A. A. Anodal excitation of cardiac muscle. Am J Physiol. 1957 Aug;190(2):383–390. doi: 10.1152/ajplegacy.1957.190.2.383. [DOI] [PubMed] [Google Scholar]
  10. Cameliet E. Decrease of K efflux and influx by external Cs ions in cardiac Purkinje and muscle cells. Pflugers Arch. 1980 Jan;383(2):143–150. doi: 10.1007/BF00581875. [DOI] [PubMed] [Google Scholar]
  11. Cerbai E., Barbieri M., Mugelli A. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes isolated from hypertensive rats. J Physiol. 1994 Dec 15;481(Pt 3):585–591. doi: 10.1113/jphysiol.1994.sp020465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cerbai E., Barbieri M., Mugelli A. Occurrence and properties of the hyperpolarization-activated current If in ventricular myocytes from normotensive and hypertensive rats during aging. Circulation. 1996 Oct 1;94(7):1674–1681. doi: 10.1161/01.cir.94.7.1674. [DOI] [PubMed] [Google Scholar]
  13. Cerbai E., Pino R., Porciatti F., Sani G., Toscano M., Maccherini M., Giunti G., Mugelli A. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation. 1997 Feb 4;95(3):568–571. doi: 10.1161/01.cir.95.3.568. [DOI] [PubMed] [Google Scholar]
  14. Colatsky T. J. Voltage clamp measurements of sodium channel properties in rabbit cardiac Purkinje fibres. J Physiol. 1980 Aug;305:215–234. doi: 10.1113/jphysiol.1980.sp013359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dekker E. Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ Res. 1970 Nov;27(5):811–823. doi: 10.1161/01.res.27.5.811. [DOI] [PubMed] [Google Scholar]
  16. DiFrancesco D. A study of the ionic nature of the pace-maker current in calf Purkinje fibres. J Physiol. 1981 May;314:377–393. doi: 10.1113/jphysiol.1981.sp013714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. DiFrancesco D., Ferroni A., Mazzanti M., Tromba C. Properties of the hyperpolarizing-activated current (if) in cells isolated from the rabbit sino-atrial node. J Physiol. 1986 Aug;377:61–88. doi: 10.1113/jphysiol.1986.sp016177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. DiFrancesco D., Noble D. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Philos Trans R Soc Lond B Biol Sci. 1985 Jan 10;307(1133):353–398. doi: 10.1098/rstb.1985.0001. [DOI] [PubMed] [Google Scholar]
  19. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  21. Hart G. The kinetics and temperature dependence of the pace-maker current if in sheep Purkinje fibres. J Physiol. 1983 Apr;337:401–416. doi: 10.1113/jphysiol.1983.sp014631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Henriquez C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit Rev Biomed Eng. 1993;21(1):1–77. [PubMed] [Google Scholar]
  23. Henriquez C. S., Trayanova N., Plonsey R. A planar slab bidomain model for cardiac tissue. Ann Biomed Eng. 1990;18(4):367–376. doi: 10.1007/BF02364155. [DOI] [PubMed] [Google Scholar]
  24. Kimitsuki T., Mitsuiye T., Noma A. Negative shift of cardiac Na+ channel kinetics in cell-attached patch recordings. Am J Physiol. 1990 Jan;258(1 Pt 2):H247–H254. doi: 10.1152/ajpheart.1990.258.1.H247. [DOI] [PubMed] [Google Scholar]
  25. Käb S., Nuss H. B., Chiamvimonvat N., O'Rourke B., Pak P. H., Kass D. A., Marban E., Tomaselli G. F. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing-induced heart failure. Circ Res. 1996 Feb;78(2):262–273. doi: 10.1161/01.res.78.2.262. [DOI] [PubMed] [Google Scholar]
  26. Lawrence J. H., Yue D. T., Rose W. C., Marban E. Sodium channel inactivation from resting states in guinea-pig ventricular myocytes. J Physiol. 1991 Nov;443:629–650. doi: 10.1113/jphysiol.1991.sp018855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liu Y., Gao W. D., O'Rourke B., Marban E. Synergistic modulation of ATP-sensitive K+ currents by protein kinase C and adenosine. Implications for ischemic preconditioning. Circ Res. 1996 Mar;78(3):443–454. doi: 10.1161/01.res.78.3.443. [DOI] [PubMed] [Google Scholar]
  28. Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994 Jun;74(6):1071–1096. doi: 10.1161/01.res.74.6.1071. [DOI] [PubMed] [Google Scholar]
  29. Luo C. H., Rudy Y. A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ Res. 1991 Jun;68(6):1501–1526. doi: 10.1161/01.res.68.6.1501. [DOI] [PubMed] [Google Scholar]
  30. Mitra R. L., Morad M. Permeance of Cs+ and Rb+ through the inwardly rectifying K+ channel in guinea pig ventricular myocytes. J Membr Biol. 1991 May;122(1):33–42. doi: 10.1007/BF01872737. [DOI] [PubMed] [Google Scholar]
  31. Plonsey R., Barr R. C. Current flow patterns in two-dimensional anisotropic bisyncytia with normal and extreme conductivities. Biophys J. 1984 Mar;45(3):557–571. doi: 10.1016/S0006-3495(84)84193-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pollard A. E., Hooke N., Henriquez C. S. Cardiac propagation simulation. Crit Rev Biomed Eng. 1992;20(3-4):171–210. [PubMed] [Google Scholar]
  33. Roth B. J. A mathematical model of make and break electrical stimulation of cardiac tissue by a unipolar anode or cathode. IEEE Trans Biomed Eng. 1995 Dec;42(12):1174–1184. doi: 10.1109/10.476124. [DOI] [PubMed] [Google Scholar]
  34. Roth B. J. How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. J Math Biol. 1992;30(6):633–646. [PubMed] [Google Scholar]
  35. Roth B. J. Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng. 1994;22(3-4):253–305. [PubMed] [Google Scholar]
  36. Roth B. J. Strength-interval curves for cardiac tissue predicted using the bidomain model. J Cardiovasc Electrophysiol. 1996 Aug;7(8):722–737. doi: 10.1111/j.1540-8167.1996.tb00580.x. [DOI] [PubMed] [Google Scholar]
  37. Roth B. J. The electrical potential produced by a strand of cardiac muscle: a bidomain analysis. Ann Biomed Eng. 1988;16(6):609–637. doi: 10.1007/BF02368018. [DOI] [PubMed] [Google Scholar]
  38. Roth B. J., Wikswo J. P., Jr Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties. IEEE Trans Biomed Eng. 1994 Mar;41(3):232–240. doi: 10.1109/10.284941. [DOI] [PubMed] [Google Scholar]
  39. Sepulveda N. G., Roth B. J., Wikswo J. P., Jr Current injection into a two-dimensional anisotropic bidomain. Biophys J. 1989 May;55(5):987–999. doi: 10.1016/S0006-3495(89)82897-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sepulveda N. G., Wikswo J. P., Jr Bipolar stimulation of cardiac tissue using an anisotropic bidomain model. J Cardiovasc Electrophysiol. 1994 Mar;5(3):258–267. doi: 10.1111/j.1540-8167.1994.tb01162.x. [DOI] [PubMed] [Google Scholar]
  41. Wikswo J. P., Jr, Lin S. F., Abbas R. A. Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. Biophys J. 1995 Dec;69(6):2195–2210. doi: 10.1016/S0006-3495(95)80115-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wikswo J. P., Jr The complexities of cardiac cables: virtual electrode effects. Biophys J. 1994 Mar;66(3 Pt 1):551–553. doi: 10.1016/s0006-3495(94)80832-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yanagihara K., Irisawa H. Inward current activated during hyperpolarization in the rabbit sinoatrial node cell. Pflugers Arch. 1980 May;385(1):11–19. doi: 10.1007/BF00583909. [DOI] [PubMed] [Google Scholar]
  44. Yu H., Chang F., Cohen I. S. Pacemaker current exists in ventricular myocytes. Circ Res. 1993 Jan;72(1):232–236. doi: 10.1161/01.res.72.1.232. [DOI] [PubMed] [Google Scholar]
  45. Yu H., Chang F., Cohen I. S. Pacemaker current i(f) in adult canine cardiac ventricular myocytes. J Physiol. 1995 Jun 1;485(Pt 2):469–483. doi: 10.1113/jphysiol.1995.sp020743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Zilberter Y. I., Timin E. N., Bendukidze Z. A., Burnashev N. A. Patch-voltage-clamp method for measuring fast inward current in single rat heart muscle cells. Pflugers Arch. 1982 Aug;394(2):150–155. doi: 10.1007/BF00582917. [DOI] [PubMed] [Google Scholar]
  47. van Ginneken A. C., Giles W. Voltage clamp measurements of the hyperpolarization-activated inward current I(f) in single cells from rabbit sino-atrial node. J Physiol. 1991 Mar;434:57–83. doi: 10.1113/jphysiol.1991.sp018459. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES