Abstract
The effects of hydrostatic pressure and temperature on the phase behavior and physical properties of the binary mixture palmitoyloleoylphosphatidylcholine/cholesterol, over the 0-40 molar % range of cholesterol compositions, were determined from the changes in the fluorescence lifetime distribution and anisotropy decay parameters of the natural lipid trans-parinaric acid (t-PnA). Pressurized samples were excited with a Ti-sapphire subpicosecond laser, and fluorescence decays were analyzed by the quantified maximum entropy method. Above the transition temperature (T(T) = -5 degrees C), at atmospheric pressure, two liquid-crystalline phases, alpha and beta, are formed in this system. At each temperature and cholesterol concentration below the transition pressure, the fluorescence lifetime distribution pattern of t-PnA was clearly modulated by the pressure changes. Pressure increased the fraction of the liquid-ordered beta-phase and its order parameter, but it decreased the amount of cholesterol in this phase. Palmitoyloleoylphosphatidylcholine/cholesterol phase diagrams were also determined as a function of temperature and hydrostatic pressure.
Full Text
The Full Text of this article is available as a PDF (102.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almeida P. F., Vaz W. L., Thompson T. E. Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry. 1992 Jul 28;31(29):6739–6747. doi: 10.1021/bi00144a013. [DOI] [PubMed] [Google Scholar]
- Brochon J. C. Maximum entropy method of data analysis in time-resolved spectroscopy. Methods Enzymol. 1994;240:262–311. doi: 10.1016/s0076-6879(94)40052-0. [DOI] [PubMed] [Google Scholar]
- Chong P. L., Cossins A. R. Interacting effects of temperature, pressure and cholesterol content upon the molecular order of dioleoylphosphatidylcholine vesicles. Biochim Biophys Acta. 1984 May 16;772(2):197–201. doi: 10.1016/0005-2736(84)90044-0. [DOI] [PubMed] [Google Scholar]
- Gordon L. M., Mobley P. W., Esgate J. A., Hofmann G., Whetton A. D., Houslay M. D. Thermotropic lipid phase separations in human platelet and rat liver plasma membranes. J Membr Biol. 1983;76(2):139–149. doi: 10.1007/BF02000614. [DOI] [PubMed] [Google Scholar]
- Livesey A. K., Brochon J. C. Analyzing the distribution of decay constants in pulse-fluorimetry using the maximum entropy method. Biophys J. 1987 Nov;52(5):693–706. doi: 10.1016/S0006-3495(87)83264-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Macdonald A. G., Wahle K. W., Cossins A. R., Behan M. K. Temperature, pressure and cholesterol effects on bilayer fluidity; a comparison of pyrene excimer/monomer ratios with the steady-state fluorescence polarization of diphenylhexatriene in liposomes and microsomes. Biochim Biophys Acta. 1988 Feb 18;938(2):231–242. doi: 10.1016/0005-2736(88)90162-9. [DOI] [PubMed] [Google Scholar]
- Mateo C. R., Lillo M. P., González-Rodríguez J., Acuña A. U. Lateral heterogeneity in human platelet plasma membrane and lipids from the time-resolved fluorescence of trans-parinaric acid. Eur Biophys J. 1991;20(1):53–59. doi: 10.1007/BF00183279. [DOI] [PubMed] [Google Scholar]
- Recktenwald D. J., McConnell H. M. Phase equilibria in binary mixtures of phosphatidylcholine and cholesterol. Biochemistry. 1981 Jul 21;20(15):4505–4510. doi: 10.1021/bi00518a042. [DOI] [PubMed] [Google Scholar]
- Reyes Mateo C., Brochon J. C., Pilar Lillo M., Ulises Acuña A. Lipid clustering in bilayers detected by the fluorescence kinetics and anisotropy of trans-parinaric acid. Biophys J. 1993 Nov;65(5):2237–2247. doi: 10.1016/S0006-3495(93)81257-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reyes Mateo C., Tauc P., Brochon J. C. Pressure effects on the physical properties of lipid bilayers detected by trans-parinaric acid fluorescence decay. Biophys J. 1993 Nov;65(5):2248–2260. doi: 10.1016/S0006-3495(93)81258-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reyes Mateo C., Ulises Acuña A., Brochon J. C. Liquid-crystalline phases of cholesterol/lipid bilayers as revealed by the fluorescence of trans-parinaric acid. Biophys J. 1995 Mar;68(3):978–987. doi: 10.1016/S0006-3495(95)80273-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sankaram M. B., Thompson T. E. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry. 1990 Nov 27;29(47):10670–10675. doi: 10.1021/bi00499a014. [DOI] [PubMed] [Google Scholar]
- Schroeder F., Jefferson J. R., Kier A. B., Knittel J., Scallen T. J., Wood W. G., Hapala I. Membrane cholesterol dynamics: cholesterol domains and kinetic pools. Proc Soc Exp Biol Med. 1991 Mar;196(3):235–252. doi: 10.3181/00379727-196-43185. [DOI] [PubMed] [Google Scholar]
- Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
- Vist M. R., Davis J. H. Phase equilibria of cholesterol/dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic resonance and differential scanning calorimetry. Biochemistry. 1990 Jan 16;29(2):451–464. doi: 10.1021/bi00454a021. [DOI] [PubMed] [Google Scholar]
- Welti R., Silbert D. F. Partition of parinaroyl phospholipid probes between solid and fluid phosphatidylcholine phases. Biochemistry. 1982 Oct 26;21(22):5685–5689. doi: 10.1021/bi00265a045. [DOI] [PubMed] [Google Scholar]
- Wolf D. E., Voglmayr J. K. Diffusion and regionalization in membranes of maturing ram spermatozoa. J Cell Biol. 1984 May;98(5):1678–1684. doi: 10.1083/jcb.98.5.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yechiel E., Edidin M. Micrometer-scale domains in fibroblast plasma membranes. J Cell Biol. 1987 Aug;105(2):755–760. doi: 10.1083/jcb.105.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]