Abstract
The partition and structure of three adrenocorticotropic hormone peptides ACTH(1-10), ACTH(1-24), and ACTH(11-24) in water and in sodium dodecylsulfate (SDS) and dodecylphosphocholine (DPC) micelles were studied by 2D NMR and NMR gradient diffusion measurements. The diffusion rates, the NH chemical shifts, and the nuclear Overhauser effect patterns provided a coherent picture of binding of these peptides. All three peptides are significantly partitioned in the negatively charged SDS micelles and possess definite secondary structure, as opposed to random structures in water. For ACTH (1-24), the hydrophobic 1-10 segment is partitioned in DPC micelles, but the charged 11-24 segment prefers to remain in the aqueous region. ACTH(11-24) does not bind significantly to the DPC micelles. The binding of the ACTH peptides in these two widely used "membrane mimics" are substantially different from that in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers obtained by attenuated total reflection infrared spectroscopy and from our preliminary diffusion studies of the same peptides in POPC vesicles. This study showed that, in a given micellar medium, all corresponding segments of these peptides are located in the same membrane environment in the system, regardless of whether these segments exist by themselves or are attached to other segments. This result may contradict the membrane-compartments concept of Schwyzer, which suggests that ACTH(1-10) and ACTH(1-24) are located in different membrane compartments because they have different address segments, and consequently, bind to different receptors. The present results also suggest that the assumption that micelles are good membrane mimics should be carefully examined.
Full Text
The Full Text of this article is available as a PDF (142.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barenholz Y., Gibbes D., Litman B. J., Goll J., Thompson T. E., Carlson R. D. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry. 1977 Jun 14;16(12):2806–2810. doi: 10.1021/bi00631a035. [DOI] [PubMed] [Google Scholar]
- Beschiaschvili G., Seelig J. Peptide binding to lipid bilayers. Nonclassical hydrophobic effect and membrane-induced pK shifts. Biochemistry. 1992 Oct 20;31(41):10044–10053. doi: 10.1021/bi00156a026. [DOI] [PubMed] [Google Scholar]
- Greff D., Toma F., Fermandjian S., Löw M., Kisfaludy L. Conformational studies of corticotropin1-32 and constitutive peptides by circular dichroism. Biochim Biophys Acta. 1976 Jul 19;439(1):219–231. doi: 10.1016/0005-2795(76)90177-x. [DOI] [PubMed] [Google Scholar]
- Gremlich H. U., Fringeli U. P., Schwyzer R. Conformational changes of adrenocorticotropin peptides upon interaction with lipid membranes revealed by infrared attenuated total reflection spectroscopy. Biochemistry. 1983 Aug 30;22(18):4257–4264. doi: 10.1021/bi00287a015. [DOI] [PubMed] [Google Scholar]
- Gremlich H. U., Fringeli U. P., Schwyzer R. Interaction of adrenocorticotropin-(11-24)-tetradecapeptide with neutral lipid membranes revealed by infrared attenuated total reflection spectroscopy. Biochemistry. 1984 Apr 10;23(8):1808–1810. doi: 10.1021/bi00303a035. [DOI] [PubMed] [Google Scholar]
- Gysin B., Schwyzer R. Hydrophobic and electrostatic interactions between adrenocorticotropin-(1-24) -tetracosapeptide and lipid vesicles. Amphiphilic primary structures. Biochemistry. 1984 Apr 10;23(8):1811–1818. doi: 10.1021/bi00303a036. [DOI] [PubMed] [Google Scholar]
- Kallick D. A., Tessmer M. R., Watts C. R., Li C. Y. The use of dodecylphosphocholine micelles in solution NMR. J Magn Reson B. 1995 Oct;109(1):60–65. doi: 10.1006/jmrb.1995.1146. [DOI] [PubMed] [Google Scholar]
- Keire D. A., Fletcher T. G. The conformation of substance P in lipid environments. Biophys J. 1996 Apr;70(4):1716–1727. doi: 10.1016/S0006-3495(96)79734-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar A., Ernst R. R., Wüthrich K. A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules. Biochem Biophys Res Commun. 1980 Jul 16;95(1):1–6. doi: 10.1016/0006-291x(80)90695-6. [DOI] [PubMed] [Google Scholar]
- Lauterwein J., Bösch C., Brown L. R., Wüthrich K. Physicochemical studies of the protein-lipid interactions in melittin-containing micelles. Biochim Biophys Acta. 1979 Sep 21;556(2):244–264. doi: 10.1016/0005-2736(79)90046-4. [DOI] [PubMed] [Google Scholar]
- Sargent D. F., Schwyzer R. Membrane lipid phase as catalyst for peptide-receptor interactions. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5774–5778. doi: 10.1073/pnas.83.16.5774. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwyzer R. ACTH: a short introductory review. Ann N Y Acad Sci. 1977 Oct 28;297:3–26. doi: 10.1111/j.1749-6632.1977.tb41843.x. [DOI] [PubMed] [Google Scholar]
- Schwyzer R. Molecular mechanism of opioid receptor selection. Biochemistry. 1986 Oct 7;25(20):6335–6342. doi: 10.1021/bi00368a075. [DOI] [PubMed] [Google Scholar]
- Schwyzer R. Peptide-membrane interactions and a new principle in quantitative structure-activity relationships. Biopolymers. 1991 May;31(6):785–792. doi: 10.1002/bip.360310624. [DOI] [PubMed] [Google Scholar]
- Seelig J., Nebel S., Ganz P., Bruns C. Electrostatic and nonpolar peptide-membrane interactions. Lipid binding and functional properties of somatostatin analogues of charge z = +1 to z = +3. Biochemistry. 1993 Sep 21;32(37):9714–9721. doi: 10.1021/bi00088a025. [DOI] [PubMed] [Google Scholar]
- Toma F., Fermandjian S., Löw M., Kisfaludy L. A proton NMR investigation of proline-24 cis-trans isomerism in corticotropin 1-32 and related peptides. Biochim Biophys Acta. 1978 May 24;534(1):112–122. doi: 10.1016/0005-2795(78)90481-6. [DOI] [PubMed] [Google Scholar]
- Tunga A., Hosur R. V. Two-dimensional NMR studies on 1-10 fragment of adrenocorticotropic hormone. Indian J Biochem Biophys. 1992 Jun;29(3):231–235. [PubMed] [Google Scholar]
- Uegaki K., Nemoto N., Shimizu M., Wada T., Kyogoku Y., Kobayashi Y. 15N labeling method of peptides using a thioredoxin gene fusion expression system: an application to ACTH-(1-24). FEBS Lett. 1996 Jan 22;379(1):47–50. doi: 10.1016/0014-5793(95)01459-4. [DOI] [PubMed] [Google Scholar]