Abstract
We report on the surface behavior of a hydrophobic, cationic peptide, [lysine-(leucine)4]4-lysine (KL4), spread at the air/water interface at 25 degrees C and pH 7.2, and its effect at very low molar ratios on the surface properties of the zwitterionic phospholipid 1,2-dipalmitoylphosphatidylcholine (DPPC), and the anionic forms of 1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) and palmitic acid (PA), in various combinations. Surface properties were evaluated by measuring equilibrium spreading pressures (pi(e)) and surface pressure-area isotherms (pi-A) with the Wilhelmy plate technique. Surface phase separation was observed with fluorescence microscopy. KL4 itself forms a single-phase monolayer, stable up to a surface pressure pi of 30 mN/m, and forms an immiscible monolayer mixture with DPPC. No strong interaction was detected between POPG and KL4 in the low pi region, whereas a stable monolayer of the PA/KL4 binary mixture forms, which is attributed to ionic interactions between oppositely charged PA and KL4. KL4 has significant effects on the DPPC/POPG mixture, in that it promotes surface phase separation while also increasing pi(e) and pi(max), and these effects are greatly enhanced in the presence of PA. In the model we have proposed, KL4 facilitates the separation of DPPC-rich and POPG/PA-rich phases to achieve surface refinement. It is these two phases that can fulfill the important lung surfactant functions of high surface pressure stability and efficient spreading.
Full Text
The Full Text of this article is available as a PDF (249.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baatz J. E., Elledge B., Whitsett J. A. Surfactant protein SP-B induces ordering at the surface of model membrane bilayers. Biochemistry. 1990 Jul 17;29(28):6714–6720. doi: 10.1021/bi00480a022. [DOI] [PubMed] [Google Scholar]
- Baatz J. E., Sarin V., Absolom D. R., Baxter C., Whitsett J. A. Effects of surfactant-associated protein SP-B synthetic analogs on the structure and surface activity of model membrane bilayers. Chem Phys Lipids. 1991 Dec;60(2):163–178. doi: 10.1016/0009-3084(91)90039-e. [DOI] [PubMed] [Google Scholar]
- Cochrane C. G., Revak S. D., Merritt T. A., Heldt G. P., Hallman M., Cunningham M. D., Easa D., Pramanik A., Edwards D. K., Alberts M. S. The efficacy and safety of KL4-surfactant in preterm infants with respiratory distress syndrome. Am J Respir Crit Care Med. 1996 Jan;153(1):404–410. doi: 10.1164/ajrccm.153.1.8542150. [DOI] [PubMed] [Google Scholar]
- Cochrane C. G., Revak S. D. Protein-phospholipid interactions in pulmonary surfactant. The Parker B. Francis Lectureship. Chest. 1994 Mar;105(3 Suppl):57S–62S. doi: 10.1378/chest.105.3_supplement.57s. [DOI] [PubMed] [Google Scholar]
- Cochrane C. G., Revak S. D. Pulmonary surfactant protein B (SP-B): structure-function relationships. Science. 1991 Oct 25;254(5031):566–568. doi: 10.1126/science.1948032. [DOI] [PubMed] [Google Scholar]
- Cockshutt A. M., Absolom D. R., Possmayer F. The role of palmitic acid in pulmonary surfactant: enhancement of surface activity and prevention of inhibition by blood proteins. Biochim Biophys Acta. 1991 Sep 11;1085(2):248–256. doi: 10.1016/0005-2760(91)90101-m. [DOI] [PubMed] [Google Scholar]
- Creuwels L. A., van Golde L. M., Haagsman H. P. The pulmonary surfactant system: biochemical and clinical aspects. Lung. 1997;175(1):1–39. doi: 10.1007/PL00007554. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Discher B. M., Maloney K. M., Schief W. R., Jr, Grainger D. W., Vogel V., Hall S. B. Lateral phase separation in interfacial films of pulmonary surfactant. Biophys J. 1996 Nov;71(5):2583–2590. doi: 10.1016/S0006-3495(96)79450-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleming B. D., Keough K. M. Surface respreading after collapse of monolayers containing major lipids of pulmonary surfactant. Chem Phys Lipids. 1988 Nov;49(1-2):81–86. doi: 10.1016/0009-3084(88)90067-9. [DOI] [PubMed] [Google Scholar]
- Gilmanshin R., Creutz C. E., Tamm L. K. Annexin IV reduces the rate of lateral lipid diffusion and changes the fluid phase structure of the lipid bilayer when it binds to negatively charged membranes in the presence of calcium. Biochemistry. 1994 Jul 12;33(27):8225–8232. doi: 10.1021/bi00193a008. [DOI] [PubMed] [Google Scholar]
- Goerke J. Lung surfactant. Biochim Biophys Acta. 1974 Dec 16;344(3-4):241–261. doi: 10.1016/0304-4157(74)90009-4. [DOI] [PubMed] [Google Scholar]
- Hawgood S., Benson B. J., Hamilton R. L., Jr Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids. Biochemistry. 1985 Jan 1;24(1):184–190. doi: 10.1021/bi00322a026. [DOI] [PubMed] [Google Scholar]
- Hawgood S., Shiffer K. Structures and properties of the surfactant-associated proteins. Annu Rev Physiol. 1991;53:375–394. doi: 10.1146/annurev.ph.53.030191.002111. [DOI] [PubMed] [Google Scholar]
- Hills B. A. The role of lung surfactant. Br J Anaesth. 1990 Jul;65(1):13–29. doi: 10.1093/bja/65.1.13. [DOI] [PubMed] [Google Scholar]
- Holm B. A., Wang Z., Egan E. A., Notter R. H. Content of dipalmitoyl phosphatidylcholine in lung surfactant: ramifications for surface activity. Pediatr Res. 1996 May;39(5):805–811. doi: 10.1203/00006450-199605000-00010. [DOI] [PubMed] [Google Scholar]
- Jobe A. H. Pulmonary surfactant therapy. N Engl J Med. 1993 Mar 25;328(12):861–868. doi: 10.1056/NEJM199303253281208. [DOI] [PubMed] [Google Scholar]
- Johansson J., Curstedt T. Molecular structures and interactions of pulmonary surfactant components. Eur J Biochem. 1997 Mar 15;244(3):675–693. doi: 10.1111/j.1432-1033.1997.00675.x. [DOI] [PubMed] [Google Scholar]
- Kang J. H., Lee M. K., Kim K. L., Hahm K. S. The relationships between biophysical activity and the secondary structure of synthetic peptides from the pulmonary surfactant protein SP-B. Biochem Mol Biol Int. 1996 Oct;40(3):617–627. doi: 10.1080/15216549600201213. [DOI] [PubMed] [Google Scholar]
- Lipp M. M., Lee K. Y., Waring A., Zasadzinski J. A. Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers. Biophys J. 1997 Jun;72(6):2783–2804. doi: 10.1016/S0006-3495(97)78921-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipp M. M., Lee K. Y., Zasadzinski J. A., Waring A. J. Phase and morphology changes in lipid monolayers induced by SP-B protein and its amino-terminal peptide. Science. 1996 Aug 30;273(5279):1196–1199. doi: 10.1126/science.273.5279.1196. [DOI] [PubMed] [Google Scholar]
- Longo M. L., Bisagno A. M., Zasadzinski J. A., Bruni R., Waring A. J. A function of lung surfactant protein SP-B. Science. 1993 Jul 23;261(5120):453–456. doi: 10.1126/science.8332910. [DOI] [PubMed] [Google Scholar]
- Oosterlaken-Dijksterhuis M. A., van Eijk M., van Golde L. M., Haagsman H. P. Lipid mixing is mediated by the hydrophobic surfactant protein SP-B but not by SP-C. Biochim Biophys Acta. 1992 Sep 21;1110(1):45–50. doi: 10.1016/0005-2736(92)90292-t. [DOI] [PubMed] [Google Scholar]
- Pastrana-Rios B., Flach C. R., Brauner J. W., Mautone A. J., Mendelsohn R. A direct test of the "squeeze-out" hypothesis of lung surfactant function. External reflection FT-IR at the air/water interface. Biochemistry. 1994 May 3;33(17):5121–5127. doi: 10.1021/bi00183a016. [DOI] [PubMed] [Google Scholar]
- Pérez-Gil J., Cruz A., Casals C. Solubility of hydrophobic surfactant proteins in organic solvent/water mixtures. Structural studies on SP-B and SP-C in aqueous organic solvents and lipids. Biochim Biophys Acta. 1993 Jul 1;1168(3):261–270. doi: 10.1016/0005-2760(93)90181-8. [DOI] [PubMed] [Google Scholar]
- Revak S. D., Merritt T. A., Cochrane C. G., Heldt G. P., Alberts M. S., Anderson D. W., Kheiter A. Efficacy of synthetic peptide-containing surfactant in the treatment of respiratory distress syndrome in preterm infant rhesus monkeys. Pediatr Res. 1996 Apr;39(4 Pt 1):715–724. doi: 10.1203/00006450-199604000-00025. [DOI] [PubMed] [Google Scholar]
- Revak S. D., Merritt T. A., Degryse E., Stefani L., Courtney M., Hallman M., Cochrane C. G. Use of human surfactant low molecular weight apoproteins in the reconstitution of surfactant biologic activity. J Clin Invest. 1988 Mar;81(3):826–833. doi: 10.1172/JCI113391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Revak S. D., Merritt T. A., Hallman M., Heldt G., La Polla R. J., Hoey K., Houghten R. A., Cochrane C. G. The use of synthetic peptides in the formation of biophysically and biologically active pulmonary surfactants. Pediatr Res. 1991 May;29(5):460–465. doi: 10.1203/00006450-199105010-00010. [DOI] [PubMed] [Google Scholar]
- Takahashi A., Waring A. J., Amirkhanian J., Fan B., Taeusch H. W. Structure-function relationships of bovine pulmonary surfactant proteins: SP-B and SP-C. Biochim Biophys Acta. 1990 May 1;1044(1):43–49. doi: 10.1016/0005-2760(90)90216-k. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Takei T., Aiba T., Masuda K., Kiuchi A., Fujiwara T. Development of synthetic lung surfactants. J Lipid Res. 1986 May;27(5):475–485. [PubMed] [Google Scholar]
- Tanaka Y., Takei T., Kanazawa Y. Lung surfactants. II. Effects of fatty acids, triacylglycerols and protein on the activity of lung surfactant. Chem Pharm Bull (Tokyo) 1983 Nov;31(11):4100–4109. doi: 10.1248/cpb.31.4100. [DOI] [PubMed] [Google Scholar]
- Taneva S., Keough K. M. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: I. Monolayers of pulmonary surfactant protein SP-B and phospholipids. Biophys J. 1994 Apr;66(4):1137–1148. doi: 10.1016/S0006-3495(94)80895-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vincent J. S., Revak S. D., Cochrane C. D., Levin I. W. Interactions of model human pulmonary surfactants with a mixed phospholipid bilayer assembly: Raman spectroscopic studies. Biochemistry. 1993 Aug 17;32(32):8228–8238. doi: 10.1021/bi00083a025. [DOI] [PubMed] [Google Scholar]
- Wang Z., Hall S. B., Notter R. H. Dynamic surface activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids. J Lipid Res. 1995 Jun;36(6):1283–1293. [PubMed] [Google Scholar]
- Waring A., Taeusch W., Bruni R., Amirkhanian J., Fan B., Stevens R., Young J. Synthetic amphipathic sequences of surfactant protein-B mimic several physicochemical and in vivo properties of native pulmonary surfactant proteins. Pept Res. 1989 Sep-Oct;2(5):308–313. [PubMed] [Google Scholar]
- Wiedmann T., Salmon A., Wong V. Phase behavior of mixtures of DPPC and POPG. Biochim Biophys Acta. 1993 Apr 7;1167(2):114–120. doi: 10.1016/0005-2760(93)90150-8. [DOI] [PubMed] [Google Scholar]
- Yu S. H., Possmayer F. Effect of pulmonary surfactant protein B (SP-B) and calcium on phospholipid adsorption and squeeze-out of phosphatidylglycerol from binary phospholipid monolayers containing dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1992 Jun 5;1126(1):26–34. doi: 10.1016/0005-2760(92)90212-e. [DOI] [PubMed] [Google Scholar]
- Yu S. H., Possmayer F. Role of bovine pulmonary surfactant-associated proteins in the surface-active property of phospholipid mixtures. Biochim Biophys Acta. 1990 Oct 1;1046(3):233–241. doi: 10.1016/0005-2760(90)90236-q. [DOI] [PubMed] [Google Scholar]
- Yu S., Harding P. G., Smith N., Possmayer F. Bovine pulmonary surfactant: chemical composition and physical properties. Lipids. 1983 Aug;18(8):522–529. doi: 10.1007/BF02535391. [DOI] [PubMed] [Google Scholar]