Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):1908–1923. doi: 10.1016/S0006-3495(98)77900-7

Hydration of the dienic lipid dioctadecadienoylphosphatidylcholine in the lamellar phase--an infrared linear dichroism and x-ray study on headgroup orientation, water ordering, and bilayer dimensions.

H Binder 1, T Gutberlet 1, A Anikin 1, G Klose 1
PMCID: PMC1299534  PMID: 9545052

Abstract

In the phospholipid 1,2-bis(2,4-octadecadienoyl)-sn-glycero-3-phosphorylcholine (DODPC) in each of the fatty acid chains, a rigid diene group is inserted in a position near the polar/apolar boundary that is exceptionally sensitive for membrane stability. DODPC transforms upon gradual dehydration from the liquid-crystalline to a metastable gel state, which rearranges into two subgel phases at low and intermediate degrees of hydration. The molecular dimensions of the respective bilayers were determined by means of x-ray diffraction. Infrared linear dichroism of selected vibrations of the phosphate and trimethylammonium groups and of the nu13(OH) band of water adsorbed onto the lipid was used to study the molecular order in the polar part of the bilayers in macroscopically oriented samples. The dense packing of the tilted acyl chains in the subgel causes the in-plane orientation of the phosphatidylcholine headgroups with direct interactions between the phosphate and trimethylammonium groups, and a strong orientation of adsorbed water molecules. In the more disordered gel, the thickness of the polar part of the bilayer increases and the lateral interactions between the lipid headgroups weaken. The higher order in the headgroup region of the subgels correlates with shorter decay lengths of the repulsive forces acting between opposite membrane surfaces. This result can be understood if the work to dehydrate the lipid is determined to a certain degree by the work to break up the lipid-water interactions without compensation by adequate lipid-lipid contacts. Almost similar area compressibility moduli are found in the liquid-crystalline and solid phases. Obviously, the lipid avoids lateral stress by the structural rearrangement.

Full Text

The Full Text of this article is available as a PDF (227.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akutsu H. Direct determination by Raman scattering of the conformation of the choline group in phospholipid bilayers. Biochemistry. 1981 Dec 22;20(26):7359–7366. doi: 10.1021/bi00529a006. [DOI] [PubMed] [Google Scholar]
  2. Bechinger B., Seelig J. Conformational changes of the phosphatidylcholine headgroup due to membrane dehydration. A 2H-NMR study. Chem Phys Lipids. 1991 May-Jun;58(1-2):1–5. doi: 10.1016/0009-3084(91)90105-k. [DOI] [PubMed] [Google Scholar]
  3. Blume A. Phase transitions of polymerizable phospholipids. Chem Phys Lipids. 1991 Mar;57(2-3):253–273. doi: 10.1016/0009-3084(91)90080-u. [DOI] [PubMed] [Google Scholar]
  4. Browning J. L. Motions and interactions of phospholipid head groups at the membrane surface. 3. Dynamic properties of amine-containing head groups. Biochemistry. 1981 Dec 8;20(25):7144–7151. doi: 10.1021/bi00528a014. [DOI] [PubMed] [Google Scholar]
  5. Büldt G., Gally H. U., Seelig J., Zaccai G. Neutron diffraction studies on phosphatidylcholine model membranes. I. Head group conformation. J Mol Biol. 1979 Nov 15;134(4):673–691. doi: 10.1016/0022-2836(79)90479-0. [DOI] [PubMed] [Google Scholar]
  6. Dluhy R. A., Chowdhry B. Z., Cameron D. G. Infrared characterization of conformational differences in the lamellar phases of 1,3-dipalmitoyl-sn-glycero-2-phosphocholine. Biochim Biophys Acta. 1985 Dec 19;821(3):437–444. doi: 10.1016/0005-2736(85)90048-3. [DOI] [PubMed] [Google Scholar]
  7. Fringeli U. P., Günthard H. H. Infrared membrane spectroscopy. Mol Biol Biochem Biophys. 1981;31:270–332. doi: 10.1007/978-3-642-81537-9_6. [DOI] [PubMed] [Google Scholar]
  8. Fringeli U. P. The structure of lipids and proteins studied by attenuated total reflection (ATR) infrared spectroscopy. II. Oriented layers of a homologous series: phosphatidylethanolamine to phosphatidylcholine. Z Naturforsch C. 1977 Jan-Feb;32(1-2):20–45. doi: 10.1515/znc-1977-1-205. [DOI] [PubMed] [Google Scholar]
  9. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hsieh C. H., Sue S. C., Lyu P. C., Wu W. G. Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region. Biophys J. 1997 Aug;73(2):870–877. doi: 10.1016/S0006-3495(97)78120-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hui S. W., Stewart T. P., Boni L. T. The nature of lipidic particles and their roles in polymorphic transitions. Chem Phys Lipids. 1983 Aug;33(2):113–126. doi: 10.1016/0009-3084(83)90015-4. [DOI] [PubMed] [Google Scholar]
  12. Hupfer B., Ringsdorf H., Schupp H. Liposomes from polymerizable phospholipids. Chem Phys Lipids. 1983 Nov;33(4):355–374. doi: 10.1016/0009-3084(83)90028-2. [DOI] [PubMed] [Google Scholar]
  13. Hübner W., Mantsch H. H. Orientation of specifically 13C=O labeled phosphatidylcholine multilayers from polarized attenuated total reflection FT-IR spectroscopy. Biophys J. 1991 Jun;59(6):1261–1272. doi: 10.1016/S0006-3495(91)82341-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim J. T., Mattai J., Shipley G. G. Gel phase polymorphism in ether-linked dihexadecylphosphatidylcholine bilayers. Biochemistry. 1987 Oct 20;26(21):6592–6598. doi: 10.1021/bi00395a005. [DOI] [PubMed] [Google Scholar]
  15. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kornyshev AA, Leikin S. Fluctuation theory of hydration forces: The dramatic effects of inhomogeneous boundary conditions. Phys Rev A Gen Phys. 1989 Dec 1;40(11):6431–6437. doi: 10.1103/physreva.40.6431. [DOI] [PubMed] [Google Scholar]
  17. Leikin S., Parsegian V. A., Rau D. C., Rand R. P. Hydration forces. Annu Rev Phys Chem. 1993;44:369–395. doi: 10.1146/annurev.pc.44.100193.002101. [DOI] [PubMed] [Google Scholar]
  18. Lewis R. N., Pohle W., McElhaney R. N. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs. Biophys J. 1996 Jun;70(6):2736–2746. doi: 10.1016/S0006-3495(96)79843-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McIntosh T. J. Differences in hydrocarbon chain tilt between hydrated phosphatidylethanolamine and phosphatidylcholine bilayers. A molecular packing model. Biophys J. 1980 Feb;29(2):237–245. doi: 10.1016/S0006-3495(80)85128-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McIntosh T. J., Magid A. D., Simon S. A. Steric repulsion between phosphatidylcholine bilayers. Biochemistry. 1987 Nov 17;26(23):7325–7332. doi: 10.1021/bi00397a020. [DOI] [PubMed] [Google Scholar]
  21. McIntosh T. J., Simon S. A. Contributions of hydration and steric (entropic) pressures to the interactions between phosphatidylcholine bilayers: experiments with the subgel phase. Biochemistry. 1993 Aug 17;32(32):8374–8384. doi: 10.1021/bi00083a042. [DOI] [PubMed] [Google Scholar]
  22. McIntosh T. J., Simon S. A. Hydration force and bilayer deformation: a reevaluation. Biochemistry. 1986 Jul 15;25(14):4058–4066. doi: 10.1021/bi00362a011. [DOI] [PubMed] [Google Scholar]
  23. O'Leary T. J., Mason J. T. A new phase in phosphatidylcholines. Biophys J. 1996 Dec;71(6):2915–2916. doi: 10.1016/S0006-3495(96)79488-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Okamura E., Umemura J., Takenaka T. Orientation studies of hydrated dipalmitoylphosphatidylcholine multibilayers by polarized FTIR-ATR spectroscopy. Biochim Biophys Acta. 1990 Jun 11;1025(1):94–98. doi: 10.1016/0005-2736(90)90195-t. [DOI] [PubMed] [Google Scholar]
  25. Parsegian V. A., Fuller N., Rand R. P. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750–2754. doi: 10.1073/pnas.76.6.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pascher I., Lundmark M., Nyholm P. G., Sundell S. Crystal structures of membrane lipids. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):339–373. doi: 10.1016/0304-4157(92)90006-v. [DOI] [PubMed] [Google Scholar]
  27. Pearson R. H., Pascher I. The molecular structure of lecithin dihydrate. Nature. 1979 Oct 11;281(5731):499–501. doi: 10.1038/281499a0. [DOI] [PubMed] [Google Scholar]
  28. Rand R. P. Interacting phospholipid bilayers: measured forces and induced structural changes. Annu Rev Biophys Bioeng. 1981;10:277–314. doi: 10.1146/annurev.bb.10.060181.001425. [DOI] [PubMed] [Google Scholar]
  29. Ruocco M. J., Siminovitch D. J., Griffin R. G. Comparative study of the gel phases of ether- and ester-linked phosphatidylcholines. Biochemistry. 1985 May 7;24(10):2406–2411. doi: 10.1021/bi00331a003. [DOI] [PubMed] [Google Scholar]
  30. Scherer J. R. On the position of the hydro-phobic/philic boundary in lipid bilayers. Biophys J. 1989 May;55(5):957–964. doi: 10.1016/S0006-3495(89)82894-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Snyder R. G., Liang G. L., Strauss H. L., Mendelsohn R. IR spectroscopic study of the structure and phase behavior of long-chain diacylphosphatidylcholines in the gel state. Biophys J. 1996 Dec;71(6):3186–3198. doi: 10.1016/S0006-3495(96)79512-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Straume M., Litman B. J. Equilibrium and dynamic structure of large, unilamellar, unsaturated acyl chain phosphatidylcholine vesicles. Higher order analysis of 1,6-diphenyl-1,3,5-hexatriene and 1-[4-(trimethylammonio)phenyl]- 6-phenyl-1,3,5-hexatriene anisotropy decay. Biochemistry. 1987 Aug 11;26(16):5113–5120. doi: 10.1021/bi00390a033. [DOI] [PubMed] [Google Scholar]
  33. Sun W. J., Tristram-Nagle S., Suter R. M., Nagle J. F. Anomalous phase behavior of long chain saturated lecithin bilayers. Biochim Biophys Acta. 1996 Feb 21;1279(1):17–24. doi: 10.1016/0005-2736(95)00236-7. [DOI] [PubMed] [Google Scholar]
  34. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  35. Ter-Minassian-Saraga L., Okamura E., Umemura J., Takenaka T. Fourier transform infrared-attenuated total reflection spectroscopy of hydration of dimyristoylphosphatidylcholine multibilayers. Biochim Biophys Acta. 1988 Dec 22;946(2):417–423. doi: 10.1016/0005-2736(88)90417-8. [DOI] [PubMed] [Google Scholar]
  36. Ulrich A. S., Watts A. Molecular response of the lipid headgroup to bilayer hydration monitored by 2H-NMR. Biophys J. 1994 May;66(5):1441–1449. doi: 10.1016/S0006-3495(94)80934-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES