Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):1949–1965. doi: 10.1016/S0006-3495(98)77903-2

The effects of solutes on the freezing properties of and hydration forces in lipid lamellar phases.

Y H Yoon 1, J M Pope 1, J Wolfe 1
PMCID: PMC1299537  PMID: 9545055

Abstract

Quantitative deuterium nuclear magnetic resonance is used to study the freezing behavior of the water in phosphatidylcholine lamellar phases, and the effect upon it of dimethylsulfoxide (DMSO), sorbitol, sucrose, and trehalose. When sufficient solute is present, an isotropic phase of concentrated aqueous solution may coexist with the lamellar phase at freezing temperatures. We determine the composition of both unfrozen phases as a function of temperature by using the intensity of the calibrated free induction decay signal (FID). The presence of DMSO or sorbitol increases the hydration of the lamellar phase at all freezing temperatures studied, and the size of the increase in hydration is comparable to that expected from their purely osmotic effect. Sucrose and trehalose increase the hydration of the lamellar phase, but, at concentrations of several molal, the increase is less than that which their purely osmotic effect would be expected to produce. A possible explanation is that very high volume fractions of sucrose and trehalose disrupt the water structure and thus reduce the repulsive hydration interaction between membranes. Because of their osmotic effect, all of the solutes studied reduced the intramembrane mechanical stresses produced in lamellar phases by freezing. Sucrose and trehalose at high concentrations produce a greater reduction than do the other solutes.

Full Text

The Full Text of this article is available as a PDF (173.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anchordoguy T. J., Rudolph A. S., Carpenter J. F., Crowe J. H. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 1987 Aug;24(4):324–331. doi: 10.1016/0011-2240(87)90036-8. [DOI] [PubMed] [Google Scholar]
  2. Bryant G., Pope J. M., Wolfe J. Motional narrowing of the 2H NMR spectra near the chain melting transition of phospholipid/D2O mixtures. Eur Biophys J. 1992;21(5):363–367. doi: 10.1007/BF00188350. [DOI] [PubMed] [Google Scholar]
  3. Gordon-Kamm W. J., Steponkus P. L. Lamellar-to-hexagonalII phase transitions in the plasma membrane of isolated protoplasts after freeze-induced dehydration. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6373–6377. doi: 10.1073/pnas.81.20.6373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Koster K. L., Webb M. S., Bryant G., Lynch D. V. Interactions between soluble sugars and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) during dehydration: vitrification of sugars alters the phase behavior of the phospholipid. Biochim Biophys Acta. 1994 Jul 13;1193(1):143–150. doi: 10.1016/0005-2736(94)90343-3. [DOI] [PubMed] [Google Scholar]
  5. LeNeveu D. M., Rand R. P. Measurement and modification of forces between lecithin bilayers. Biophys J. 1977 May;18(2):209–230. doi: 10.1016/S0006-3495(77)85608-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LeNeveu D. M., Rand R. P., Parsegian V. A. Measurement of forces between lecithin bilayers. Nature. 1976 Feb 19;259(5544):601–603. doi: 10.1038/259601a0. [DOI] [PubMed] [Google Scholar]
  7. Leikin S., Rau D. C., Parsegian V. A. Direct measurement of forces between self-assembled proteins: temperature-dependent exponential forces between collagen triple helices. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):276–280. doi: 10.1073/pnas.91.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Measurement of the lateral compressibility of several phospholipid bilayers. Biophys J. 1982 Mar;37(3):667–672. [PMC free article] [PubMed] [Google Scholar]
  9. Marra J., Israelachvili J. Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine bilayers in aqueous electrolyte solutions. Biochemistry. 1985 Aug 13;24(17):4608–4618. doi: 10.1021/bi00338a020. [DOI] [PubMed] [Google Scholar]
  10. Pincet F., Perez E., Wolfe J. Do trehalose and dimethyl sulfoxide affect intermembrane forces? Cryobiology. 1994 Dec;31(6):531–539. doi: 10.1006/cryo.1994.1064. [DOI] [PubMed] [Google Scholar]
  11. Sun W. Q., Leopold A. C., Crowe L. M., Crowe J. H. Stability of dry liposomes in sugar glasses. Biophys J. 1996 Apr;70(4):1769–1776. doi: 10.1016/S0006-3495(96)79740-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Uemura M., Joseph R. A., Steponkus P. L. Cold Acclimation of Arabidopsis thaliana (Effect on Plasma Membrane Lipid Composition and Freeze-Induced Lesions). Plant Physiol. 1995 Sep;109(1):15–30. doi: 10.1104/pp.109.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ulrich A. S., Sami M., Watts A. Hydration of DOPC bilayers by differential scanning calorimetry. Biochim Biophys Acta. 1994 Apr 20;1191(1):225–230. doi: 10.1016/0005-2736(94)90253-4. [DOI] [PubMed] [Google Scholar]
  14. Webb M. S., Hui S. W., Steponkus P. L. Dehydration-induced lamellar-to-hexagonal-II phase transitions in DOPE/DOPC mixtures. Biochim Biophys Acta. 1993 Jan 18;1145(1):93–104. doi: 10.1016/0005-2736(93)90385-d. [DOI] [PubMed] [Google Scholar]
  15. Wolfe J., Yan Z., Pope J. M. Hydration forces and membrane stresses: cryobiological implications and a new technique for measurement. Biophys Chem. 1994 Feb;49(1):51–58. doi: 10.1016/0301-4622(93)e0081-f. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES