Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):2029–2035. doi: 10.1016/S0006-3495(98)77909-3

PsaC subunit of photosystem I is oriented with iron-sulfur cluster F(B) as the immediate electron donor to ferredoxin and flavodoxin.

I R Vassiliev 1, Y S Jung 1, F Yang 1, J H Golbeck 1
PMCID: PMC1299543  PMID: 9545061

Abstract

The PsaC subunit of photosystem I (PS I) binds two [4Fe-4S] clusters, F(A) and F(B), functioning as electron carriers between F(X) and soluble ferredoxin. To resolve the issue whether F(A) or F(B) is proximal to F(X), we used single-turnover flashes to promote step-by-step electron transfer between electron carriers in control (both F(A) and F(B) present) and HgCl2-treated (F(B)-less) PS I complexes from Synechococcus sp. PCC 6301 and analyzed the kinetics of P700+ reduction by monitoring the absorbance changes at 832 nm in the presence of a fast electron donor (phenazine methosulfate (PMS)). In control PS I complexes exogenously added ferredoxin, or flavodoxin could be photoreduced on each flash, thus allowing P700+ to be reduced from PMS. In F(B)-less complexes, both in the presence and in the absence of ferredoxin or flavodoxin, P700+ was reduced from PMS only on the first flash and was reduced from F(X)- on the following flashes, indicating lack of electron transfer to ferredoxin or flavodoxin. In the F(B)-less complexes, a normal level of P700 photooxidation was detected accompanied by a high yield of charge recombination between P700+ and F(A)- in the presence of a slow donor, 2,6-dichlorophenol-indophenol. This recombination remained the only pathway of F(A)- reoxidation in the presence of added ferredoxin, consistent with the lack of forward electron transfer. F(A)- could be reoxidized by methyl viologen in F(B)-less PS I complexes, although at a concentration two orders of magnitude higher than is required in wild-type PS I complexes, thus implying the presence of a diffusion barrier. The inhibition of electron transfer to ferredoxin and flavodoxin was completely reversed after reconstituting the F(B) cluster. Using rate versus distance estimates for electron transfer rates from F(X) to ferredoxin for two possible orientations of PsaC, we conclude that the kinetic data are best compatible with PsaC being oriented with F(A) as the cluster proximal to F(X) and F(B) as the distal cluster that donates electrons to ferredoxin.

Full Text

The Full Text of this article is available as a PDF (119.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adman E. T., Siefker L. C., Jensen L. H. Structure of Peptococcus aerogenes ferredoxin. Refinement at 2 A resolution. J Biol Chem. 1976 Jun 25;251(12):3801–3806. doi: 10.2210/pdb1fdx/pdb. [DOI] [PubMed] [Google Scholar]
  2. Bearden A. J., Malkin R. Correlation of reaction-center chlorophyll (P-700) oxidation and bound iron-sulfur protein photoreduction in chloroplast photosystem I at low temperatures. Biochim Biophys Acta. 1976 Jun 8;430(3):538–547. doi: 10.1016/0005-2728(76)90029-3. [DOI] [PubMed] [Google Scholar]
  3. Bottin H., Lagoutte B. Ferredoxin and flavodoxin from the cyanobacterium Synechocystis sp PCC 6803. Biochim Biophys Acta. 1992 Jul 6;1101(1):48–56. doi: 10.1016/0167-4838(92)90465-p. [DOI] [PubMed] [Google Scholar]
  4. Cammack R., Ryan M. D., Stewart A. C. The EPR spectrum of iron--sulphur centre B in photosystem 1 of Phormidium laminosum. FEBS Lett. 1979 Nov 15;107(2):422–426. doi: 10.1016/0014-5793(79)80422-6. [DOI] [PubMed] [Google Scholar]
  5. Chitnis V. P., Jungs Y. S., Albee L., Golbeck J. H., Chitnis P. R. Mutational analysis of photosystem I polypeptides. Role of PsaD and the lysyl 106 residue in the reductase activity of the photosystem I. J Biol Chem. 1996 May 17;271(20):11772–11780. doi: 10.1074/jbc.271.20.11772. [DOI] [PubMed] [Google Scholar]
  6. Duée E. D., Fanchon E., Vicat J., Sieker L. C., Meyer J., Moulis J. M. Refined crystal structure of the 2[4Fe-4S] ferredoxin from Clostridium acidurici at 1.84 A resolution. J Mol Biol. 1994 Nov 4;243(4):683–695. doi: 10.1016/0022-2836(94)90041-8. [DOI] [PubMed] [Google Scholar]
  7. Fischer N., Sétif P., Rochaix J. D. Targeted mutations in the psaC gene of Chlamydomonas reinhardtii: preferential reduction of FB at low temperature is not accompanied by altered electron flow from photosystem I to ferredoxin. Biochemistry. 1997 Jan 7;36(1):93–102. doi: 10.1021/bi962244v. [DOI] [PubMed] [Google Scholar]
  8. Guigliarelli B., Guillaussier J., More C., Sétif P., Bottin H., Bertrand P. Structural organization of the iron-sulfur centers in Synechocystis 6803 photosystem I. EPR study of oriented thylakoid membranes and analysis of the magnetic interactions. J Biol Chem. 1993 Jan 15;268(2):900–908. [PubMed] [Google Scholar]
  9. Hayashida N., Matsubayashi T., Shinozaki K., Sugiura M., Inoue K., Hiyama T. The gene for the 9 kd polypeptide, a possible apoprotein for the iron-sulfur centers A and B of the photosystem I complex, in tobacco chloroplast DNA. Curr Genet. 1987;12(4):247–250. doi: 10.1007/BF00435285. [DOI] [PubMed] [Google Scholar]
  10. Heathcote P., Williams-Smith D. L., Sihra C. K., Evans M. C. The role of the membrane-bound iron-sulphur centres A and B in the photosystem I reaction centre of spinach chloroplasts. Biochim Biophys Acta. 1978 Aug 8;503(2):333–342. doi: 10.1016/0005-2728(78)90192-5. [DOI] [PubMed] [Google Scholar]
  11. Hiyama T., Ke B. A further study of P430: a possible primary electron acceptor of photosystem I. Arch Biochem Biophys. 1971 Nov;147(1):99–108. doi: 10.1016/0003-9861(71)90314-6. [DOI] [PubMed] [Google Scholar]
  12. Jung Y. S., Vassiliev I. R., Yu J., McIntosh L., Golbeck J. H. Strains of Synechocystis sp. PCC 6803 with altered PsaC. II. EPR and optical spectroscopic properties of FA and FB in aspartate, serine, and alanine replacements of cysteines 14 and 51. J Biol Chem. 1997 Mar 21;272(12):8040–8049. doi: 10.1074/jbc.272.12.8040. [DOI] [PubMed] [Google Scholar]
  13. Kamlowski A., van der Est A., Fromme P., Krauss N., Schubert W. D., Klukas O., Stehlik D. The structural organization of the PsaC protein in Photosystem I from single crystal EPR and X-ray crystallographic studies. Biochim Biophys Acta. 1997 Apr 11;1319(2-3):199–213. doi: 10.1016/s0005-2728(96)00162-4. [DOI] [PubMed] [Google Scholar]
  14. Krauss N., Schubert W. D., Klukas O., Fromme P., Witt H. T., Saenger W. Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol. 1996 Nov;3(11):965–973. doi: 10.1038/nsb1196-965. [DOI] [PubMed] [Google Scholar]
  15. Li N., Zhao J. D., Warren P. V., Warden J. T., Bryant D. A., Golbeck J. H. PsaD is required for the stable binding of PsaC to the photosystem I core protein of Synechococcus sp. PCC 6301. Biochemistry. 1991 Aug 6;30(31):7863–7872. doi: 10.1021/bi00245a028. [DOI] [PubMed] [Google Scholar]
  16. Mannan R. M., He W. Z., Metzger S. U., Whitmarsh J., Malkin R., Pakrasi H. B. Active photosynthesis in cyanobacterial mutants with directed modifications in the ligands for two iron-sulfur clusters on the PsaC protein of photosystem I. EMBO J. 1996 Apr 15;15(8):1826–1833. [PMC free article] [PubMed] [Google Scholar]
  17. Medina M., Hervás M., Navarro J. A., De la Rosa M. A., Gómez-Moreno C., Tollin G. A laser flash absorption spectroscopy study of Anabaena sp. PCC 7119 flavodoxin photoreduction by photosystem I particles from spinach. FEBS Lett. 1992 Nov 30;313(3):239–242. doi: 10.1016/0014-5793(92)81200-6. [DOI] [PubMed] [Google Scholar]
  18. Moser C. C., Keske J. M., Warncke K., Farid R. S., Dutton P. L. Nature of biological electron transfer. Nature. 1992 Feb 27;355(6363):796–802. doi: 10.1038/355796a0. [DOI] [PubMed] [Google Scholar]
  19. Mühlenhoff U., Zhao J., Bryant D. A. Interaction between photosystem I and flavodoxin from the cyanobacterium Synechococcus sp. PCC 7002 as revealed by chemical cross-linking. Eur J Biochem. 1996 Jan 15;235(1-2):324–331. doi: 10.1111/j.1432-1033.1996.00324.x. [DOI] [PubMed] [Google Scholar]
  20. Naver H., Scott M. P., Golbeck J. H., Møller B. L., Scheller H. V. Reconstitution of barley photosystem I with modified PSI-C allows identification of domains interacting with PSI-D and PSI-A/B. J Biol Chem. 1996 Apr 12;271(15):8996–9001. doi: 10.1074/jbc.271.15.8996. [DOI] [PubMed] [Google Scholar]
  21. Nitschke W., Jubault-Bregler M., Rutherford A. W. The reaction center associated tetraheme cytochrome subunit from Chromatium vinosum revisited: a reexamination of its EPR properties. Biochemistry. 1993 Aug 31;32(34):8871–8879. doi: 10.1021/bi00085a019. [DOI] [PubMed] [Google Scholar]
  22. Nugent J. H., Møller B. L., Evans M. C. Comparison of the EPR properties of photosystem I iron-sulphur centres A and B in spinach and barley. Biochim Biophys Acta. 1981 Feb 12;634(2):249–255. doi: 10.1016/0005-2728(81)90143-2. [DOI] [PubMed] [Google Scholar]
  23. Oh-oka H., Takahashi Y., Kuriyama K., Saeki K., Matsubara H. The protein responsible for center A/B in spinach photosystem I: isolation with iron-sulfur cluster(s) and complete sequence analysis. J Biochem. 1988 Jun;103(6):962–968. doi: 10.1093/oxfordjournals.jbchem.a122394. [DOI] [PubMed] [Google Scholar]
  24. Rodday S. M., Do L. T., Chynwat V., Frank H. A., Biggins J. Site-directed mutagenesis of the subunit PsaC establishes a surface-exposed domain interacting with the photosystem I core binding site. Biochemistry. 1996 Sep 10;35(36):11832–11838. doi: 10.1021/bi9612834. [DOI] [PubMed] [Google Scholar]
  25. Sauer K., Mathis P., Acker S., van Best J. A. Electron acceptors associated with P-700 in Triton solubilized photosystem I particles from spinach chloroplasts. Biochim Biophys Acta. 1978 Jul 6;503(1):120–134. doi: 10.1016/0005-2728(78)90166-4. [DOI] [PubMed] [Google Scholar]
  26. Sétif P. Q., Bottin H. Laser flash absorption spectroscopy study of ferredoxin reduction by photosystem I in Synechocystis sp. PCC 6803: evidence for submicrosecond and microsecond kinetics. Biochemistry. 1994 Jul 19;33(28):8495–8504. doi: 10.1021/bi00194a014. [DOI] [PubMed] [Google Scholar]
  27. Vassiliev I. R., Jung Y. S., Mamedov M. D., Semenov AYu, Golbeck J. H. Near-IR absorbance changes and electrogenic reactions in the microsecond-to-second time domain in Photosystem I. Biophys J. 1997 Jan;72(1):301–315. doi: 10.1016/S0006-3495(97)78669-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Yu J., Vassiliev I. R., Jung Y. S., Golbeck J. H., McIntosh L. Strains of synechocystis sp. PCC 6803 with altered PsaC. I. Mutations incorporated in the cysteine ligands of the two [4Fe-4S] clusters FA and FB of photosystem I. J Biol Chem. 1997 Mar 21;272(12):8032–8039. doi: 10.1074/jbc.272.12.8032. [DOI] [PubMed] [Google Scholar]
  29. Zhao J., Li N., Warren P. V., Golbeck J. H., Bryant D. A. Site-directed conversion of a cysteine to aspartate leads to the assembly of a [3Fe-4S] cluster in PsaC of photosystem I. The photoreduction of FA is independent of FB. Biochemistry. 1992 Jun 9;31(22):5093–5099. doi: 10.1021/bi00137a001. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES