Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):2036–2045. doi: 10.1016/s0006-3495(98)77910-x

Association and dissociation kinetics of anti-hen egg lysozyme monoclonal antibodies HyHEL-5 and HyHEL-10.

K A Xavier 1, R C Willson 1
PMCID: PMC1299544  PMID: 9545062

Abstract

The immunoglobulin G1 (IgG1) kappa antibodies HyHEL-5 and HyHEL-10 interact with nonoverlapping epitopes on hen egg lysozyme (HEL); the HyHEL-5/HEL interface has two energetically and structurally important salt links, whereas the HyHEL-10/HEL interface involves predominantly hydrogen bonds and van der Waals interactions. The kinetics of association and dissociation of antibodies HyHEL-5 and HyHEL-10 with HEL under a variety of conditions were investigated in this study. The association of each antibody with HEL follows second-order kinetics. The association process is significantly diffusion-limited, as indicated by the viscosity dependence of the interaction of both antibodies with HEL, although detailed energetics suggest that the association process may be more complex. The association rate constant for the HyHEL-5/HEL system is within a factor of 2 of the modified Smoluchowski estimate for proteins of this size, whereas HyHEL-10 interacts with HEL with an association rate an order of magnitude lower. The association reactions are insensitive to ionic strength, showing only a twofold decrease in the association rate constant when the ionic strength was increased from 27 mM to 500 mM. Interestingly, the association rate constant for the interaction of HyHEL-5 with HEL varies with pH in the range 6.0-10.0, whereas HyHEL-10/HEL association is not affected by pH in the same range. The dissociation of the HyHEL-5/HEL and HyHEL-10/HEL complexes follow first-order kinetics with half-lives at 25 degrees C of approximately 3,150 s and approximately 21,660 s, respectively.

Full Text

The Full Text of this article is available as a PDF (111.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berg O. G. Orientation constraints in diffusion-limited macromolecular association. The role of surface diffusion as a rate-enhancing mechanism. Biophys J. 1985 Jan;47(1):1–14. doi: 10.1016/S0006-3495(85)83870-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berg O. G., von Hippel P. H. Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem. 1985;14:131–160. doi: 10.1146/annurev.bb.14.060185.001023. [DOI] [PubMed] [Google Scholar]
  3. Braden B. C., Cauerhff A., Dall'Acqua W., Fields B. A., Goldbaum F. A., Malchiodi E. L., Mariuzza R. A., Poljak R. J., Schwarz F. P., Ysern X. Structure and thermodynamics of antigen recognition by antibodies. Ann N Y Acad Sci. 1995 Sep 29;764:315–327. doi: 10.1111/j.1749-6632.1995.tb55843.x. [DOI] [PubMed] [Google Scholar]
  4. Braden B. C., Fields B. A., Poljak R. J. Conservation of water molecules in an antibody-antigen interaction. J Mol Recognit. 1995 Sep-Oct;8(5):317–325. doi: 10.1002/jmr.300080505. [DOI] [PubMed] [Google Scholar]
  5. Braden B. C., Fields B. A., Ysern X., Goldbaum F. A., Dall'Acqua W., Schwarz F. P., Poljak R. J., Mariuzza R. A. Crystal structure of the complex of the variable domain of antibody D1.3 and turkey egg white lysozyme: a novel conformational change in antibody CDR-L3 selects for antigen. J Mol Biol. 1996 Apr 19;257(5):889–894. doi: 10.1006/jmbi.1996.0209. [DOI] [PubMed] [Google Scholar]
  6. Clackson T., Wells J. A. A hot spot of binding energy in a hormone-receptor interface. Science. 1995 Jan 20;267(5196):383–386. doi: 10.1126/science.7529940. [DOI] [PubMed] [Google Scholar]
  7. Cohen G. H., Sheriff S., Davies D. R. Refined structure of the monoclonal antibody HyHEL-5 with its antigen hen egg-white lysozyme. Acta Crystallogr D Biol Crystallogr. 1996 Mar 1;52(Pt 2):315–326. doi: 10.1107/S0907444995014855. [DOI] [PubMed] [Google Scholar]
  8. Davies D. R., Cohen G. H. Interactions of protein antigens with antibodies. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):7–12. doi: 10.1073/pnas.93.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foote J., Eisen H. N. Kinetic and affinity limits on antibodies produced during immune responses. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1254–1256. doi: 10.1073/pnas.92.5.1254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Foote J., Winter G. Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol. 1992 Mar 20;224(2):487–499. doi: 10.1016/0022-2836(92)91010-m. [DOI] [PubMed] [Google Scholar]
  11. Friguet B., Chaffotte A. F., Djavadi-Ohaniance L., Goldberg M. E. Measurements of the true affinity constant in solution of antigen-antibody complexes by enzyme-linked immunosorbent assay. J Immunol Methods. 1985 Mar 18;77(2):305–319. doi: 10.1016/0022-1759(85)90044-4. [DOI] [PubMed] [Google Scholar]
  12. Friguet B., Djavadi-Ohaniance L., Goldberg M. E. Polypeptide-antibody binding mechanism: conformational adaptation investigated by equilibrium and kinetic analysis. Res Immunol. 1989 May;140(4):355–376. doi: 10.1016/0923-2494(89)90142-9. [DOI] [PubMed] [Google Scholar]
  13. Goldbaum F. A., Schwarz F. P., Eisenstein E., Cauerhff A., Mariuzza R. A., Poljak R. J. The effect of water activity on the association constant and the enthalpy of reaction between lysozyme and the specific antibodies D1.3 and D44.1. J Mol Recognit. 1996 Jan-Feb;9(1):6–12. doi: 10.1002/(SICI)1099-1352(199601)9:1%3C6::AID-JMR240%3E3.0.CO;2-V. [DOI] [PubMed] [Google Scholar]
  14. Hibbits K. A., Gill D. S., Willson R. C. Isothermal titration calorimetric study of the association of hen egg lysozyme and the anti-lysozyme antibody HyHEL-5. Biochemistry. 1994 Mar 29;33(12):3584–3590. doi: 10.1021/bi00178a015. [DOI] [PubMed] [Google Scholar]
  15. Ito W., Yasui H., Kurosawa Y. Mutations in the complementarity-determining regions do not cause differences in free energy during the process of formation of the activated complex between an antibody and the corresponding protein antigen. J Mol Biol. 1995 May 12;248(4):729–732. doi: 10.1006/jmbi.1995.0255. [DOI] [PubMed] [Google Scholar]
  16. Jin L., Fendly B. M., Wells J. A. High resolution functional analysis of antibody-antigen interactions. J Mol Biol. 1992 Aug 5;226(3):851–865. doi: 10.1016/0022-2836(92)90636-x. [DOI] [PubMed] [Google Scholar]
  17. Jin L., Wells J. A. Dissecting the energetics of an antibody-antigen interface by alanine shaving and molecular grafting. Protein Sci. 1994 Dec;3(12):2351–2357. doi: 10.1002/pro.5560031219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kam-Morgan L. N., Lavoie T. B., Smith-Gill S. J., Kirsch J. F. Site-directed mutagenesis in analysis of protein-protein interactions. Methods Enzymol. 1993;224:503–516. doi: 10.1016/0076-6879(93)24037-u. [DOI] [PubMed] [Google Scholar]
  19. Kozack R. E., Subramaniam S. Brownian dynamics simulations of molecular recognition in an antibody-antigen system. Protein Sci. 1993 Jun;2(6):915–926. doi: 10.1002/pro.5560020605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kozack R. E., d'Mello M. J., Subramaniam S. Computer modeling of electrostatic steering and orientational effects in antibody-antigen association. Biophys J. 1995 Mar;68(3):807–814. doi: 10.1016/S0006-3495(95)80257-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kumagai I., Kojima S., Tamaki E., Miura K. Conversion of Trp 62 of hen egg-white lysozyme to Tyr by site-directed mutagenesis. J Biochem. 1987 Oct;102(4):733–740. doi: 10.1093/oxfordjournals.jbchem.a122111. [DOI] [PubMed] [Google Scholar]
  22. Lavoie T. B., Drohan W. N., Smith-Gill S. J. Experimental analysis by site-directed mutagenesis of somatic mutation effects on affinity and fine specificity in antibodies specific for lysozyme. J Immunol. 1992 Jan 15;148(2):503–513. [PubMed] [Google Scholar]
  23. Leder L., Berger C., Bornhauser S., Wendt H., Ackermann F., Jelesarov I., Bosshard H. R. Spectroscopic, calorimetric, and kinetic demonstration of conformational adaptation in peptide-antibody recognition. Biochemistry. 1995 Dec 19;34(50):16509–16518. doi: 10.1021/bi00050a035. [DOI] [PubMed] [Google Scholar]
  24. McDonald S. M., Willson R. C., McCammon J. A. Determination of the pKa values of titratable groups of an antigen-antibody complex, HyHEL-5-hen egg lysozyme. Protein Eng. 1995 Sep;8(9):915–924. doi: 10.1093/protein/8.9.915. [DOI] [PubMed] [Google Scholar]
  25. Mummert M. E., Voss E. W., Jr Transition-state theory and secondary forces in antigen--antibody complexes. Biochemistry. 1996 Jun 25;35(25):8187–8192. doi: 10.1021/bi9604791. [DOI] [PubMed] [Google Scholar]
  26. Northrup S. H., Erickson H. P. Kinetics of protein-protein association explained by Brownian dynamics computer simulation. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3338–3342. doi: 10.1073/pnas.89.8.3338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Novotny J., Bruccoleri R. E., Saul F. A. On the attribution of binding energy in antigen-antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry. 1989 May 30;28(11):4735–4749. doi: 10.1021/bi00437a034. [DOI] [PubMed] [Google Scholar]
  28. Novotny J., Sharp K. Electrostatic fields in antibodies and antibody/antigen complexes. Prog Biophys Mol Biol. 1992;58(3):203–224. doi: 10.1016/0079-6107(92)90006-r. [DOI] [PubMed] [Google Scholar]
  29. Padlan E. A., Silverton E. W., Sheriff S., Cohen G. H., Smith-Gill S. J., Davies D. R. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5938–5942. doi: 10.1073/pnas.86.15.5938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  31. Raman C. S., Jemmerson R., Nall B. T., Allen M. J. Diffusion-limited rates for monoclonal antibody binding to cytochrome c. Biochemistry. 1992 Oct 27;31(42):10370–10379. doi: 10.1021/bi00157a027. [DOI] [PubMed] [Google Scholar]
  32. Sheriff S., Silverton E. W., Padlan E. A., Cohen G. H., Smith-Gill S. J., Finzel B. C., Davies D. R. Three-dimensional structure of an antibody-antigen complex. Proc Natl Acad Sci U S A. 1987 Nov;84(22):8075–8079. doi: 10.1073/pnas.84.22.8075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Shick K. A., Xavier K. A., Rajpal A., Smith-Gill S. J., Willson R. C. Association of the anti-hen egg lysozyme antibody HyHEL-5 with avian species variant and mutant lysozymes. Biochim Biophys Acta. 1997 Jul 18;1340(2):205–214. doi: 10.1016/s0167-4838(97)00035-6. [DOI] [PubMed] [Google Scholar]
  34. Slagle S. P., Kozack R. E., Subramaniam S. Role of electrostatics in antibody-antigen association: anti-hen egg lysozyme/lysozyme complex (HyHEL-5/HEL). J Biomol Struct Dyn. 1994 Oct;12(2):439–456. doi: 10.1080/07391102.1994.10508750. [DOI] [PubMed] [Google Scholar]
  35. Smith-Gill S. J., Wilson A. C., Potter M., Prager E. M., Feldmann R. J., Mainhart C. R. Mapping the antigenic epitope for a monoclonal antibody against lysozyme. J Immunol. 1982 Jan;128(1):314–322. [PubMed] [Google Scholar]
  36. Tsumoto K., Ogasahara K., Ueda Y., Watanabe K., Yutani K., Kumagai I. Role of salt bridge formation in antigen-antibody interaction. Entropic contribution to the complex between hen egg white lysozyme and its monoclonal antibody HyHEL10. J Biol Chem. 1996 Dec 20;271(51):32612–32616. doi: 10.1074/jbc.271.51.32612. [DOI] [PubMed] [Google Scholar]
  37. Wells J. A. Binding in the growth hormone receptor complex. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):1–6. doi: 10.1073/pnas.93.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Xavier K. A., Shick K. A., Smith-Gil S. J., Willson R. C. Involvement of water molecules in the association of monoclonal antibody HyHEL-5 with bobwhite quail lysozyme. Biophys J. 1997 Oct;73(4):2116–2125. doi: 10.1016/S0006-3495(97)78242-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. von Hippel P. H., Berg O. G. Facilitated target location in biological systems. J Biol Chem. 1989 Jan 15;264(2):675–678. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES