Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):2069–2075. doi: 10.1016/S0006-3495(98)77913-5

Energy transfers in the B808-866 antenna from the green bacterium Chloroflexus aurantiacus.

V I Novoderezhkin 1, A S Taisova 1, Z G Fetisova 1, R E Blankenship 1, S Savikhin 1, D R Buck 1, W S Struve 1
PMCID: PMC1299547  PMID: 9545065

Abstract

Energy transfers within the B808-866 BChl a antenna in chlorosome-membrane complexes from the green photosynthetic bacterium Chloroflexus aurantiacus were studied in two-color pump-probe experiments at room temperature. The steady-state spectroscopy and protein sequence of the B808-866 complex are reminiscent of well-studied LH2 antennas from purple bacteria. B808-->B866 energy transfers occur with approximately 2 ps kinetics; this is slower by a factor of approximately 2 than B800-->B850 energy transfers in LH2 complexes from Rhodopseudomonas acidophila or Rhodobacter sphaeroides. Anisotropy studies show no evidence for intra-B808 energy transfers before the B808-->B866 step; intra-B866 processes are reflected in 350-550 fs anisotropy decays. Two-color anisotropies under 808 nm excitation suggest the presence of a B808-->B866 channel arising either from direct laser excitation of upper B866 exciton components that overlap the B808 absorption band or from excitation of B866 vibronic bands in nontotally symmetric modes.

Full Text

The Full Text of this article is available as a PDF (119.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dracheva T. V., Novoderezhkin V. I., Razjivin A. P. Exciton delocalization in the antenna of purple bacteria: exciton spectrum calculations using Z-ray data and experimental site inhomogeneity. FEBS Lett. 1996 May 27;387(1):81–84. doi: 10.1016/0014-5793(96)00456-5. [DOI] [PubMed] [Google Scholar]
  2. Fetisova Z., Freiberg A., Mauring K., Novoderezhkin V., Taisova A., Timpmann K. Excitation energy transfer in chlorosomes of green bacteria: theoretical and experimental studies. Biophys J. 1996 Aug;71(2):995–1010. doi: 10.1016/S0006-3495(96)79301-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hess S., Akesson E., Cogdell R. J., Pullerits T., Sundström V. Energy transfer in spectrally inhomogeneous light-harvesting pigment-protein complexes of purple bacteria. Biophys J. 1995 Dec;69(6):2211–2225. doi: 10.1016/S0006-3495(95)80137-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Koepke J., Hu X., Muenke C., Schulten K., Michel H. The crystal structure of the light-harvesting complex II (B800-850) from Rhodospirillum molischianum. Structure. 1996 May 15;4(5):581–597. doi: 10.1016/s0969-2126(96)00063-9. [DOI] [PubMed] [Google Scholar]
  5. Müller M. G., Griebenow K., Holzwarth A. R. Picosecond energy transfer and trapping kinetics in living cells of the green bacterium Chloroflexus aurantiacus. Biochim Biophys Acta. 1993 Sep 13;1144(2):161–169. doi: 10.1016/0005-2728(93)90168-f. [DOI] [PubMed] [Google Scholar]
  6. Novoderezhkin V. I., Razjivin A. P. Exciton dynamics in circular aggregates: application to antenna of photosynthetic purple bacteria. Biophys J. 1995 Mar;68(3):1089–1100. doi: 10.1016/S0006-3495(95)80283-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Savikhin S., Struve W. S. Ultrafast energy transfer in FMO trimers from the green bacterium Chlorobium tepidum. Biochemistry. 1994 Sep 20;33(37):11200–11208. doi: 10.1021/bi00203a016. [DOI] [PubMed] [Google Scholar]
  8. Savikhin S., Wells T., Song P. S., Struve W. S. Ultrafast pump-probe spectroscopy of native etiolated oat phytochrome. Biochemistry. 1993 Jul 27;32(29):7512–7518. doi: 10.1021/bi00080a024. [DOI] [PubMed] [Google Scholar]
  9. Savikhin S., Zhu Y., Blankenship R. E., Struve W. S. Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium Chloroflexus aurantiacus. J Phys Chem. 1996 Feb 29;100(9):3320–3322. doi: 10.1021/jp953734k. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES