Abstract
We have compared capacitance and amperometric measurements in bovine chromaffin cells when secretion was elicited by flash photolysis of caged-calcium or step depolarizations. Total amperometric charge depended linearly on the amount of capacitance increase in both types of experiments. Furthermore, the properties of resolvable amperometric spikes after flashes were comparable to those observed after depolarizations, and their timing was compatible with the rate of capacitance increase. For a more detailed comparison, we used Monte Carlo simulations of multiple amperometric events occurring randomly over the surface of a sphere and summing together, to generate a reference amperometric signal for a given measured capacitance increase. Even after correction for endocytotic processes, the time courses of the integrated experimental records lagged behind the integrated Monte Carlo records by approximately 50 ms in flash and depolarization experiments. This delay was larger by approximately 40 ms than what can be expected from the "pre-foot delay" or the foot duration. Possible sources for the remaining delay could be diffusional barriers like the patch-pipette and the chamber bottom, which are not taken into account in the model. We also applied a novel type of fluctuation analysis to estimate the relative quantum size of an amperometric event. On average the estimates from experimental amperometric traces, in both flash and depolarization experiments, were 3-5 times smaller than estimates from simulated ones. This discrepancy can be due to contributions to the amperometric current from small vesicles, preferred release from cellular regions orientated toward the chamber bottom, or abundance of "foot-only" events. In conclusion, amperometric signals in flash and depolarization experiments displayed similar delayed average time courses and a lower estimate for the relative quantum size compared to the modeled amperometric signals. However, individual amperometric spikes were in agreement with expectations derived from capacitance signals.
Full Text
The Full Text of this article is available as a PDF (174.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alvarez de Toledo G., Fernández-Chacón R., Fernández J. M. Release of secretory products during transient vesicle fusion. Nature. 1993 Jun 10;363(6429):554–558. doi: 10.1038/363554a0. [DOI] [PubMed] [Google Scholar]
- Artalejo C. R., Henley J. R., McNiven M. A., Palfrey H. C. Rapid endocytosis coupled to exocytosis in adrenal chromaffin cells involves Ca2+, GTP, and dynamin but not clathrin. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8328–8332. doi: 10.1073/pnas.92.18.8328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bittner M. A., Holz R. W. Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J Biol Chem. 1992 Aug 15;267(23):16219–16225. [PubMed] [Google Scholar]
- Chow R. H., Klingauf J., Heinemann C., Zucker R. S., Neher E. Mechanisms determining the time course of secretion in neuroendocrine cells. Neuron. 1996 Feb;16(2):369–376. doi: 10.1016/s0896-6273(00)80054-9. [DOI] [PubMed] [Google Scholar]
- Chow R. H., von Rüden L., Neher E. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature. 1992 Mar 5;356(6364):60–63. doi: 10.1038/356060a0. [DOI] [PubMed] [Google Scholar]
- Coorssen J. R., Schmitt H., Almers W. Ca2+ triggers massive exocytosis in Chinese hamster ovary cells. EMBO J. 1996 Aug 1;15(15):3787–3791. [PMC free article] [PubMed] [Google Scholar]
- Coupland R. E. Determining sizes and distribution of sizes of spherical bodies such as chromaffin granules in tissue sections. Nature. 1968 Jan 27;217(5126):384–388. doi: 10.1038/217384a0. [DOI] [PubMed] [Google Scholar]
- Finnegan J. M., Pihel K., Cahill P. S., Huang L., Zerby S. E., Ewing A. G., Kennedy R. T., Wightman R. M. Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic beta-cells. J Neurochem. 1996 May;66(5):1914–1923. doi: 10.1046/j.1471-4159.1996.66051914.x. [DOI] [PubMed] [Google Scholar]
- Heinemann C., Chow R. H., Neher E., Zucker R. S. Kinetics of the secretory response in bovine chromaffin cells following flash photolysis of caged Ca2+. Biophys J. 1994 Dec;67(6):2546–2557. doi: 10.1016/S0006-3495(94)80744-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heinemann C., von Rüden L., Chow R. H., Neher E. A two-step model of secretion control in neuroendocrine cells. Pflugers Arch. 1993 Jul;424(2):105–112. doi: 10.1007/BF00374600. [DOI] [PubMed] [Google Scholar]
- Henkel A. W., Almers W. Fast steps in exocytosis and endocytosis studied by capacitance measurements in endocrine cells. Curr Opin Neurobiol. 1996 Jun;6(3):350–357. doi: 10.1016/s0959-4388(96)80119-x. [DOI] [PubMed] [Google Scholar]
- Horrigan F. T., Bookman R. J. Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron. 1994 Nov;13(5):1119–1129. doi: 10.1016/0896-6273(94)90050-7. [DOI] [PubMed] [Google Scholar]
- Jankowski J. A., Finnegan J. M., Wightman R. M. Extracellular ionic composition alters kinetics of vesicular release of catecholamines and quantal size during exocytosis at adrenal medullary cells. J Neurochem. 1994 Nov;63(5):1739–1747. doi: 10.1046/j.1471-4159.1994.63051739.x. [DOI] [PubMed] [Google Scholar]
- Jankowski J. A., Schroeder T. J., Ciolkowski E. L., Wightman R. M. Temporal characteristics of quantal secretion of catecholamines from adrenal medullary cells. J Biol Chem. 1993 Jul 15;268(20):14694–14700. [PubMed] [Google Scholar]
- Jankowski J. A., Schroeder T. J., Holz R. W., Wightman R. M. Quantal secretion of catecholamines measured from individual bovine adrenal medullary cells permeabilized with digitonin. J Biol Chem. 1992 Sep 15;267(26):18329–18335. doi: 10.21236/ada251716. [DOI] [PubMed] [Google Scholar]
- Kasai H., Takagi H., Ninomiya Y., Kishimoto T., Ito K., Yoshida A., Yoshioka T., Miyashita Y. Two components of exocytosis and endocytosis in phaeochromocytoma cells studied using caged Ca2+ compounds. J Physiol. 1996 Jul 1;494(Pt 1):53–65. doi: 10.1113/jphysiol.1996.sp021475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leszczyszyn D. J., Jankowski J. A., Viveros O. H., Diliberto E. J., Jr, Near J. A., Wightman R. M. Secretion of catecholamines from individual adrenal medullary chromaffin cells. J Neurochem. 1991 Jun;56(6):1855–1863. doi: 10.1111/j.1471-4159.1991.tb03441.x. [DOI] [PubMed] [Google Scholar]
- Messler P., Harz H., Uhl R. Instrumentation for multiwavelengths excitation imaging. J Neurosci Methods. 1996 Nov;69(2):137–147. doi: 10.1016/S0165-0270(96)00032-5. [DOI] [PubMed] [Google Scholar]
- Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neher E., Stevens C. F. Conductance fluctuations and ionic pores in membranes. Annu Rev Biophys Bioeng. 1977;6:345–381. doi: 10.1146/annurev.bb.06.060177.002021. [DOI] [PubMed] [Google Scholar]
- Neher E., Zucker R. S. Multiple calcium-dependent processes related to secretion in bovine chromaffin cells. Neuron. 1993 Jan;10(1):21–30. doi: 10.1016/0896-6273(93)90238-m. [DOI] [PubMed] [Google Scholar]
- Ninomiya Y., Kishimoto T., Miyashita Y., Kasai H. Ca2+-dependent exocytotic pathways in Chinese hamster ovary fibroblasts revealed by a caged-Ca2+ compound. J Biol Chem. 1996 Jul 26;271(30):17751–17754. doi: 10.1074/jbc.271.30.17751. [DOI] [PubMed] [Google Scholar]
- Ninomiya Y., Kishimoto T., Yamazawa T., Ikeda H., Miyashita Y., Kasai H. Kinetic diversity in the fusion of exocytotic vesicles. EMBO J. 1997 Mar 3;16(5):929–934. doi: 10.1093/emboj/16.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oberhauser A. F., Robinson I. M., Fernandez J. M. Do caged-Ca2+ compounds mimic the physiological stimulus for secretion? J Physiol Paris. 1995;89(2):71–75. doi: 10.1016/0928-4257(96)80553-5. [DOI] [PubMed] [Google Scholar]
- Oberhauser A. F., Robinson I. M., Fernandez J. M. Simultaneous capacitance and amperometric measurements of exocytosis: a comparison. Biophys J. 1996 Aug;71(2):1131–1139. doi: 10.1016/S0006-3495(96)79315-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson I. M., Finnegan J. M., Monck J. R., Wightman R. M., Fernandez J. M. Colocalization of calcium entry and exocytotic release sites in adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2474–2478. doi: 10.1073/pnas.92.7.2474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schroeder T. J., Jankowski J. A., Kawagoe K. T., Wightman R. M., Lefrou C., Amatore C. Analysis of diffusional broadening of vesicular packets of catecholamines released from biological cells during exocytosis. Anal Chem. 1992 Dec 15;64(24):3077–3083. doi: 10.1021/ac00048a003. [DOI] [PubMed] [Google Scholar]
- Smith C., Neher E. Multiple forms of endocytosis in bovine adrenal chromaffin cells. J Cell Biol. 1997 Nov 17;139(4):885–894. doi: 10.1083/jcb.139.4.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wightman R. M., Jankowski J. A., Kennedy R. T., Kawagoe K. T., Schroeder T. J., Leszczyszyn D. J., Near J. A., Diliberto E. J., Jr, Viveros O. H. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10754–10758. doi: 10.1073/pnas.88.23.10754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wightman R. M., Schroeder T. J., Finnegan J. M., Ciolkowski E. L., Pihel K. Time course of release of catecholamines from individual vesicles during exocytosis at adrenal medullary cells. Biophys J. 1995 Jan;68(1):383–390. doi: 10.1016/S0006-3495(95)80199-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Z., Misler S., Chow R. H. Rapid fluctuations in transmitter release from single vesicles in bovine adrenal chromaffin cells. Biophys J. 1996 Mar;70(3):1543–1552. doi: 10.1016/S0006-3495(96)79718-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhou Z., Neher E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol. 1993 Sep;469:245–273. doi: 10.1113/jphysiol.1993.sp019813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Rüden L., Neher E. A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science. 1993 Nov 12;262(5136):1061–1065. doi: 10.1126/science.8235626. [DOI] [PubMed] [Google Scholar]