Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Apr;74(4):2129–2137. doi: 10.1016/S0006-3495(98)77920-2

Imaging the permeability pore transition in single mitochondria.

J Hüser 1, C E Rechenmacher 1, L A Blatter 1
PMCID: PMC1299554  PMID: 9545072

Abstract

In mitochondria the opening of a large proteinaceous pore, the "mitochondrial permeability transition pore" (MTP), is known to occur under conditions of oxidative stress and matrix calcium overload. MTP opening and the resulting cellular energy deprivation have been implicated in processes such as hypoxic cell damage, apoptosis, and neuronal excitotoxicity. Membrane potential (delta psi(m)) in single isolated heart mitochondria was measured by confocal microscopy with a voltage-sensitive fluorescent dye. Measurements in mitochondrial populations revealed a gradual loss of delta psi(m) due to the light-induced generation of free radicals. In contrast, the depolarization in individual mitochondria was fast, sometimes causing marked oscillations of delta psi(m). Rapid depolarizations were accompanied by an increased permeability of the inner mitochondrial membrane to matrix-entrapped calcein (approximately 620 Da), indicating the opening of a large membrane pore. The MTP inhibitor cyclosporin A significantly stabilized delta psi(m) in single mitochondria, thereby slowing the voltage decay in averaged recordings. We conclude that the spontaneous depolarizations were caused by repeated stochastic openings and closings of the transition pore. The data demonstrate a much more dynamic regulation of membrane permeability at the level of a single organelle than predicted from ensemble behavior of mitochondrial populations.

Full Text

The Full Text of this article is available as a PDF (172.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beatrice M. C., Stiers D. L., Pfeiffer D. R. The role of glutathione in the retention of Ca2+ by liver mitochondria. J Biol Chem. 1984 Jan 25;259(2):1279–1287. [PubMed] [Google Scholar]
  2. Bernardi P., Broekemeier K. M., Pfeiffer D. R. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr. 1994 Oct;26(5):509–517. doi: 10.1007/BF00762735. [DOI] [PubMed] [Google Scholar]
  3. Bernardi P., Petronilli V. The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr. 1996 Apr;28(2):131–138. doi: 10.1007/BF02110643. [DOI] [PubMed] [Google Scholar]
  4. Beutner G., Ruck A., Riede B., Welte W., Brdiczka D. Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett. 1996 Nov 4;396(2-3):189–195. doi: 10.1016/0014-5793(96)01092-7. [DOI] [PubMed] [Google Scholar]
  5. Brdiczka D. Contact sites between mitochondrial envelope membranes. Structure and function in energy- and protein-transfer. Biochim Biophys Acta. 1991 Nov 13;1071(3):291–312. doi: 10.1016/0304-4157(91)90018-r. [DOI] [PubMed] [Google Scholar]
  6. Broekemeier K. M., Dempsey M. E., Pfeiffer D. R. Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem. 1989 May 15;264(14):7826–7830. [PubMed] [Google Scholar]
  7. Brustovetsky N., Becker A., Klingenberg M., Bamberg E. Electrical currents associated with nucleotide transport by the reconstituted mitochondrial ADP/ATP carrier. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):664–668. doi: 10.1073/pnas.93.2.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brustovetsky N., Klingenberg M. Mitochondrial ADP/ATP carrier can be reversibly converted into a large channel by Ca2+. Biochemistry. 1996 Jul 2;35(26):8483–8488. doi: 10.1021/bi960833v. [DOI] [PubMed] [Google Scholar]
  9. Carbonera D., Azzone G. F. Permeability of inner mitochondrial membrane and oxidative stress. Biochim Biophys Acta. 1988 Aug 18;943(2):245–255. doi: 10.1016/0005-2736(88)90556-1. [DOI] [PubMed] [Google Scholar]
  10. Castilho R. F., Kowaltowski A. J., Vercesi A. E. The irreversibility of inner mitochondrial membrane permeabilization by Ca2+ plus prooxidants is determined by the extent of membrane protein thiol cross-linking. J Bioenerg Biomembr. 1996 Dec;28(6):523–529. doi: 10.1007/BF02110442. [DOI] [PubMed] [Google Scholar]
  11. Crompton M., Ellinger H., Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 1988 Oct 1;255(1):357–360. [PMC free article] [PubMed] [Google Scholar]
  12. Fagian M. M., Pereira-da-Silva L., Martins I. S., Vercesi A. E. Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+ plus prooxidants. J Biol Chem. 1990 Nov 15;265(32):19955–19960. [PubMed] [Google Scholar]
  13. Farkas D. L., Wei M. D., Febbroriello P., Carson J. H., Loew L. M. Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys J. 1989 Dec;56(6):1053–1069. doi: 10.1016/S0006-3495(89)82754-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Foote C. S. Mechanisms of photosensitized oxidation. There are several different types of photosensitized oxidation which may be important in biological systems. Science. 1968 Nov 29;162(3857):963–970. doi: 10.1126/science.162.3857.963. [DOI] [PubMed] [Google Scholar]
  15. Gudz T., Eriksson O., Kushnareva Y., Saris N. E., Novgorodov S. Effect of butylhydroxytoluene and related compounds on permeability of the inner mitochondrial membrane. Arch Biochem Biophys. 1997 Jun 1;342(1):143–156. doi: 10.1006/abbi.1997.0113. [DOI] [PubMed] [Google Scholar]
  16. Gunter T. E., Gunter K. K., Sheu S. S., Gavin C. E. Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol. 1994 Aug;267(2 Pt 1):C313–C339. doi: 10.1152/ajpcell.1994.267.2.C313. [DOI] [PubMed] [Google Scholar]
  17. Gunter T. E., Pfeiffer D. R. Mechanisms by which mitochondria transport calcium. Am J Physiol. 1990 May;258(5 Pt 1):C755–C786. doi: 10.1152/ajpcell.1990.258.5.C755. [DOI] [PubMed] [Google Scholar]
  18. Haworth R. A., Hunter D. R. The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys. 1979 Jul;195(2):460–467. doi: 10.1016/0003-9861(79)90372-2. [DOI] [PubMed] [Google Scholar]
  19. Ichas F., Jouaville L. S., Mazat J. P. Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell. 1997 Jun 27;89(7):1145–1153. doi: 10.1016/s0092-8674(00)80301-3. [DOI] [PubMed] [Google Scholar]
  20. Kowaltowski A. J., Castilho R. F., Vercesi A. E. Opening of the mitochondrial permeability transition pore by uncoupling or inorganic phosphate in the presence of Ca2+ is dependent on mitochondrial-generated reactive oxygen species. FEBS Lett. 1996 Jan 8;378(2):150–152. doi: 10.1016/0014-5793(95)01449-7. [DOI] [PubMed] [Google Scholar]
  21. Krasnikov B. F., Kuzminova A. E., Zorov D. B. The Ca2+ -induced pore opening in mitochondria energized by succinate-ferricyanide electron transport. FEBS Lett. 1997 Dec 8;419(1):137–140. doi: 10.1016/s0014-5793(97)01450-6. [DOI] [PubMed] [Google Scholar]
  22. Loew L. M., Tuft R. A., Carrington W., Fay F. S. Imaging in five dimensions: time-dependent membrane potentials in individual mitochondria. Biophys J. 1993 Dec;65(6):2396–2407. doi: 10.1016/S0006-3495(93)81318-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lötscher H. R., Winterhalter K. H., Carafoli E., Richter C. The energy-state of mitochondria during the transport of Ca2+. Eur J Biochem. 1980 Sep;110(1):211–216. doi: 10.1111/j.1432-1033.1980.tb04857.x. [DOI] [PubMed] [Google Scholar]
  24. Mannella C. A. The 'ins' and 'outs' of mitochondrial membrane channels. Trends Biochem Sci. 1992 Aug;17(8):315–320. doi: 10.1016/0968-0004(92)90444-e. [DOI] [PubMed] [Google Scholar]
  25. Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc. 1966 Aug;41(3):445–502. doi: 10.1111/j.1469-185x.1966.tb01501.x. [DOI] [PubMed] [Google Scholar]
  26. Moran O., Sandri G., Panfili E., Stühmer W., Sorgato M. C. Electrophysiological characterization of contact sites in brain mitochondria. J Biol Chem. 1990 Jan 15;265(2):908–913. [PubMed] [Google Scholar]
  27. Mårtensson J., Lai J. C., Meister A. High-affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7185–7189. doi: 10.1073/pnas.87.18.7185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nieminen A. L., Saylor A. K., Tesfai S. A., Herman B., Lemasters J. J. Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J. 1995 Apr 1;307(Pt 1):99–106. doi: 10.1042/bj3070099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Palmer J. W., Tandler B., Hoppel C. L. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977 Dec 10;252(23):8731–8739. [PubMed] [Google Scholar]
  30. Pfanner N., Rassow J., Wienhues U., Hergersberg C., Söllner T., Becker K., Neupert W. Contact sites between inner and outer membranes: structure and role in protein translocation into the mitochondria. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):239–242. doi: 10.1016/0005-2728(90)90257-5. [DOI] [PubMed] [Google Scholar]
  31. Salet C., Moreno G., Ricchelli F., Bernardi P. Singlet oxygen produced by photodynamic action causes inactivation of the mitochondrial permeability transition pore. J Biol Chem. 1997 Aug 29;272(35):21938–21943. doi: 10.1074/jbc.272.35.21938. [DOI] [PubMed] [Google Scholar]
  32. Scorrano L., Petronilli V., Bernardi P. On the voltage dependence of the mitochondrial permeability transition pore. A critical appraisal. J Biol Chem. 1997 May 9;272(19):12295–12299. doi: 10.1074/jbc.272.19.12295. [DOI] [PubMed] [Google Scholar]
  33. Sheetz M. P., Koppel D. E. Membrane damage caused by irradiation of fluorescent concanavalin A. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3314–3317. doi: 10.1073/pnas.76.7.3314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Szabó I., De Pinto V., Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett. 1993 Sep 13;330(2):206–210. doi: 10.1016/0014-5793(93)80274-x. [DOI] [PubMed] [Google Scholar]
  35. Szabó I., Zoratti M. The mitochondrial megachannel is the permeability transition pore. J Bioenerg Biomembr. 1992 Feb;24(1):111–117. doi: 10.1007/BF00769537. [DOI] [PubMed] [Google Scholar]
  36. Szabó I., Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett. 1993 Sep 13;330(2):201–205. doi: 10.1016/0014-5793(93)80273-w. [DOI] [PubMed] [Google Scholar]
  37. Tikhonova I. M., Andreyev AYu, Antonenko YuN, Kaulen A. D., Komrakov AYu, Skulachev V. P. Ion permeability induced in artificial membranes by the ATP/ADP antiporter. FEBS Lett. 1994 Jan 17;337(3):231–234. doi: 10.1016/0014-5793(94)80197-5. [DOI] [PubMed] [Google Scholar]
  38. Valle V. G., Fagian M. M., Parentoni L. S., Meinicke A. R., Vercesi A. E. The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants. Arch Biochem Biophys. 1993 Nov 15;307(1):1–7. doi: 10.1006/abbi.1993.1551. [DOI] [PubMed] [Google Scholar]
  39. White R. J., Reynolds I. J. Mitochondrial depolarization in glutamate-stimulated neurons: an early signal specific to excitotoxin exposure. J Neurosci. 1996 Sep 15;16(18):5688–5697. doi: 10.1523/JNEUROSCI.16-18-05688.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zamzami N., Susin S. A., Marchetti P., Hirsch T., Gómez-Monterrey I., Castedo M., Kroemer G. Mitochondrial control of nuclear apoptosis. J Exp Med. 1996 Apr 1;183(4):1533–1544. doi: 10.1084/jem.183.4.1533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES