Abstract
Ionic channels bathed in mixed solutions of two permeant electrolytes often conduct less current than channels bathed in pure solutions of either. For many years, this anomalous mole fraction effect (AMFE) has been thought to occur only in single-file pores containing two or more ions at a time. Most thinking about channels incorporates this view. We show here that the AMFE arises naturally, as an electrostatic consequence of localized ion specific binding, if the average current through a channel is described by a theory (Poisson-Nernst-Planck, PNP) that computes the average electric field from the average concentration of charges in and near the channel. The theory contains only those ion-ion interactions mediated by the mean field, and it does not enforce single filing. The AMFE is predicted by PNP over a wide range of mean concentrations of ions in the channel; for example, it is predicted when (on the average) less, or much less, than one ion is found in the channel's pore. In this treatment, the AMFE arises, in large measure, from a depletion layer produced near a region of ion-specific binding. The small excess concentration of ions in the binding region repels all nearby ions of like charge, thereby creating a depletion layer. The overall conductance of the channel arises in effect from resistors in series, one from the binding region, one from the depletion zone, and one from the unbinding region. The highest value resistor (which occurs in the depletion zone) limits the overall series conductance. Here the AMFE is not the result of single filing or multiple occupancy, and so previous views of permeation need to be revised: the presence of an AMFE does not imply that ions permeate single file through a multiply occupied pore.
Full Text
The Full Text of this article is available as a PDF (149.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Almers W., McCleskey E. W. Non-selective conductance in calcium channels of frog muscle: calcium selectivity in a single-file pore. J Physiol. 1984 Aug;353:585–608. doi: 10.1113/jphysiol.1984.sp015352. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Armstrong C. M., Neyton J. Ion permeation through calcium channels. A one-site model. Ann N Y Acad Sci. 1991;635:18–25. doi: 10.1111/j.1749-6632.1991.tb36477.x. [DOI] [PubMed] [Google Scholar]
- Bratko D, Henderson DJ, Blum L. Limiting law for ion adsorption in narrow planar pores. Phys Rev A. 1991 Dec 15;44(12):8235–8241. doi: 10.1103/physreva.44.8235. [DOI] [PubMed] [Google Scholar]
- Chen D. P., Eisenberg R. S. Flux, coupling, and selectivity in ionic channels of one conformation. Biophys J. 1993 Aug;65(2):727–746. doi: 10.1016/S0006-3495(93)81099-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen D., Eisenberg R. Charges, currents, and potentials in ionic channels of one conformation. Biophys J. 1993 May;64(5):1405–1421. doi: 10.1016/S0006-3495(93)81507-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen D., Lear J., Eisenberg B. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophys J. 1997 Jan;72(1):97–116. doi: 10.1016/S0006-3495(97)78650-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen D., Xu L., Tripathy A., Meissner G., Eisenberg B. Permeation through the calcium release channel of cardiac muscle. Biophys J. 1997 Sep;73(3):1337–1354. doi: 10.1016/S0006-3495(97)78167-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ciani S., Krasne S., Miyazaki S., Hagiwara S. A model for anomalous rectification: electrochemical-potential-dependent gating of membrane channels. J Membr Biol. 1978 Dec 15;44(2):103–134. doi: 10.1007/BF01976035. [DOI] [PubMed] [Google Scholar]
- Eisenberg R. S. Computing the field in proteins and channels. J Membr Biol. 1996 Mar;150(1):1–25. doi: 10.1007/s002329900026. [DOI] [PubMed] [Google Scholar]
- Eisenman G., Latorre R., Miller C. Multi-ion conduction and selectivity in the high-conductance Ca++-activated K+ channel from skeletal muscle. Biophys J. 1986 Dec;50(6):1025–1034. doi: 10.1016/S0006-3495(86)83546-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Miyazaki S., Krasne S., Ciani S. Anomalous permeabilities of the egg cell membrane of a starfish in K+-Tl+ mixtures. J Gen Physiol. 1977 Sep;70(3):269–281. doi: 10.1085/jgp.70.3.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heginbotham L., MacKinnon R. Conduction properties of the cloned Shaker K+ channel. Biophys J. 1993 Nov;65(5):2089–2096. doi: 10.1016/S0006-3495(93)81244-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B., Schwarz W. Potassium channels as multi-ion single-file pores. J Gen Physiol. 1978 Oct;72(4):409–442. doi: 10.1085/jgp.72.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holst M., Kozack R. E., Saied F., Subramaniam S. Treatment of electrostatic effects in proteins: multigrid-based Newton iterative method for solution of the full nonlinear Poisson-Boltzmann equation. Proteins. 1994 Mar;18(3):231–245. doi: 10.1002/prot.340180304. [DOI] [PubMed] [Google Scholar]
- Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
- Jing N., Prasad K. U., Urry D. W. The determination of binding constants of micellar-packaged gramicidin A by 13C-and 23Na-NMR. Biochim Biophys Acta. 1995 Aug 23;1238(1):1–11. doi: 10.1016/0005-2736(95)00095-k. [DOI] [PubMed] [Google Scholar]
- Neher E., Sakmann B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature. 1976 Apr 29;260(5554):799–802. doi: 10.1038/260799a0. [DOI] [PubMed] [Google Scholar]
- Warshel A., Russell S. T. Calculations of electrostatic interactions in biological systems and in solutions. Q Rev Biophys. 1984 Aug;17(3):283–422. doi: 10.1017/s0033583500005333. [DOI] [PubMed] [Google Scholar]
- Yool A. J., Schwarz T. L. Anomalous mole fraction effect induced by mutation of the H5 pore region in the Shaker K+ channel. Biophys J. 1996 Nov;71(5):2467–2472. doi: 10.1016/S0006-3495(96)79440-7. [DOI] [PMC free article] [PubMed] [Google Scholar]