Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2388–2397. doi: 10.1016/S0006-3495(98)77947-0

Surface dipole potential at the interface between water and self-assembled monolayers of phosphatidylserine and phosphatidic acid.

M R Moncelli 1, L Becucci 1, F T Buoninsegni 1, R Guidelli 1
PMCID: PMC1299581  PMID: 9591665

Abstract

The nature and magnitude of the surface dipole potential chi at a membrane/water interface still remain open to discussion. By combining measurements of differential capacity C and charge density sigma at the interface between self-assembled monolayers of phosphatidylserine and phosphatidic acid supported by mercury and aqueous electrolytes of different concentration and pH, a sigmoidal dependence of chi upon sigma is revealed, with the inflection at sigma = 0. This behavior is strongly reminiscent of the surface dipole potential due to reorientation of adsorbed water molecules at electrified interfaces. The small increase in C with a decrease in the frequency of the AC signal below approximately 80 Hz, as observed with phospholipid monolayers with partially protonated polar groups, is explained either by a sluggish collective reorientation of some polar groups of the lipid or by a sluggish movement of protons across the polar head region.

Full Text

The Full Text of this article is available as a PDF (108.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antonenko Y. N., Kovbasnjuk O. N., Yaguzhinsky L. S. Evidence in favor of the existence of a kinetic barrier for proton transfer from a surface of bilayer phospholipid membrane to bulk water. Biochim Biophys Acta. 1993 Jul 25;1150(1):45–50. doi: 10.1016/0005-2736(93)90119-k. [DOI] [PubMed] [Google Scholar]
  2. Flewelling R. F., Hubbell W. L. The membrane dipole potential in a total membrane potential model. Applications to hydrophobic ion interactions with membranes. Biophys J. 1986 Feb;49(2):541–552. doi: 10.1016/S0006-3495(86)83664-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gawrisch K., Ruston D., Zimmerberg J., Parsegian V. A., Rand R. P., Fuller N. Membrane dipole potentials, hydration forces, and the ordering of water at membrane surfaces. Biophys J. 1992 May;61(5):1213–1223. doi: 10.1016/S0006-3495(92)81931-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Heberle J., Riesle J., Thiedemann G., Oesterhelt D., Dencher N. A. Proton migration along the membrane surface and retarded surface to bulk transfer. Nature. 1994 Aug 4;370(6488):379–382. doi: 10.1038/370379a0. [DOI] [PubMed] [Google Scholar]
  5. Honig B. H., Hubbell W. L., Flewelling R. F. Electrostatic interactions in membranes and proteins. Annu Rev Biophys Biophys Chem. 1986;15:163–193. doi: 10.1146/annurev.bb.15.060186.001115. [DOI] [PubMed] [Google Scholar]
  6. Kell D. B. On the functional proton current pathway of electron transport phosphorylation. An electrodic view. Biochim Biophys Acta. 1979 Jul 3;549(1):55–99. doi: 10.1016/0304-4173(79)90018-1. [DOI] [PubMed] [Google Scholar]
  7. MacDonald R. C., Simon S. A., Baer E. Ionic influences on the phase transition of dipalmitoylphosphatidylserine. Biochemistry. 1976 Feb 24;15(4):885–891. doi: 10.1021/bi00649a025. [DOI] [PubMed] [Google Scholar]
  8. Moncelli M. R., Becucci L., Guidelli R. The intrinsic pKa values for phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine in monolayers deposited on mercury electrodes. Biophys J. 1994 Jun;66(6):1969–1980. doi: 10.1016/S0006-3495(94)80990-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ohki S., Kurland R. Surface potential of phosphatidylserine monolayers. II. Divalent and monovalent ion binding. Biochim Biophys Acta. 1981 Jul 20;645(2):170–176. doi: 10.1016/0005-2736(81)90187-5. [DOI] [PubMed] [Google Scholar]
  10. Polle A., Junge W. Proton diffusion along the membrane surface of thylakoids is not enhanced over that in bulk water. Biophys J. 1989 Jul;56(1):27–31. doi: 10.1016/S0006-3495(89)82649-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Prats M., Tocanne J. F., Teissié J. Lateral proton conduction at a lipid/water interface. Its modulation by physical parameters. Experimental and mathematical approaches. Eur J Biochem. 1985 Jun 18;149(3):663–668. doi: 10.1111/j.1432-1033.1985.tb08975.x. [DOI] [PubMed] [Google Scholar]
  12. Teissié J., Prats M., Soucaille P., Tocanne J. F. Evidence for conduction of protons along the interface between water and a polar lipid monolayer. Proc Natl Acad Sci U S A. 1985 May;82(10):3217–3221. doi: 10.1073/pnas.82.10.3217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Tsui F. C., Ojcius D. M., Hubbell W. L. The intrinsic pKa values for phosphatidylserine and phosphatidylethanolamine in phosphatidylcholine host bilayers. Biophys J. 1986 Feb;49(2):459–468. doi: 10.1016/S0006-3495(86)83655-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Zheng C., Vanderkooi G. Molecular origin of the internal dipole potential in lipid bilayers: calculation of the electrostatic potential. Biophys J. 1992 Oct;63(4):935–941. doi: 10.1016/S0006-3495(92)81673-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES