Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2398–2404. doi: 10.1016/S0006-3495(98)77948-2

Atomic force microscope imaging of phospholipid bilayer degradation by phospholipase A2.

M Grandbois 1, H Clausen-Schaumann 1, H Gaub 1
PMCID: PMC1299582  PMID: 9591666

Abstract

We have investigated the time course of the degradation of a supported dipalmitoylphosphatidylcholine bilayer by phospholipase A2 in aqueous buffer with an atomic force microscope. Contact mode imaging allows visualization of enzyme activity on the substrate with a lateral resolution of less than 10 nm. Detailed analysis of the micrographs reveals a dependence of enzyme activity on the phospholipid organization and orientation in the bilayer. These experiments suggest that it is possible to observe single enzymes at work in small channels, which are created by the hydrolysis of membrane phospholipids. Indeed, the measured rate of hydrolysis of phospholipids corresponds very well with the enzyme activity found in kinetic studies. It was also possible to correlate the number of enzymes at the surface, as calculated from the binding constant to the number of starting points of the hydrolysis. In addition, the width of the channels was found to be comparable to the diameter of a single phospholipase A2 and thus further supports the single-enzyme hypothesis.

Full Text

The Full Text of this article is available as a PDF (235.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell J. D., Biltonen R. L. Thermodynamic and kinetic studies of the interaction of vesicular dipalmitoylphosphatidylcholine with Agkistrodon piscivorus piscivorus phospholipase A2. J Biol Chem. 1989 Jan 5;264(1):225–230. [PubMed] [Google Scholar]
  2. Burack W. R., Biltonen R. L. Lipid bilayer heterogeneities and modulation of phospholipase A2 activity. Chem Phys Lipids. 1994 Sep 6;73(1-2):209–222. doi: 10.1016/0009-3084(94)90182-1. [DOI] [PubMed] [Google Scholar]
  3. Grainger D. W., Reichert A., Ringsdorf H., Salesse C. Hydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy. Biochim Biophys Acta. 1990 Apr 30;1023(3):365–379. doi: 10.1016/0005-2736(90)90128-b. [DOI] [PubMed] [Google Scholar]
  4. Hui S. W., Viswanathan R., Zasadzinski J. A., Israelachvili J. N. The structure and stability of phospholipid bilayers by atomic force microscopy. Biophys J. 1995 Jan;68(1):171–178. doi: 10.1016/S0006-3495(95)80172-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Jain M. K., Maliwal B. P. Spectroscopic properties of the states of pig pancreatic phospholipase A2 at interfaces and their possible molecular origin. Biochemistry. 1993 Nov 9;32(44):11838–11846. doi: 10.1021/bi00095a012. [DOI] [PubMed] [Google Scholar]
  6. Jain M. K., Ranadive G., Yu B. Z., Verheij H. M. Interfacial catalysis by phospholipase A2: monomeric enzyme is fully catalytically active at the bilayer interface. Biochemistry. 1991 Jul 23;30(29):7330–7340. doi: 10.1021/bi00243a038. [DOI] [PubMed] [Google Scholar]
  7. Kensil C. R., Dennis E. A. Action of cobra venom phospholipase A2 on the gel and liquid crystalline states of dimyristoyl and dipalmitoyl phosphatidylcholine vesicles. J Biol Chem. 1979 Jul 10;254(13):5843–5848. [PubMed] [Google Scholar]
  8. Lichtenberg D., Romero G., Menashe M., Biltonen R. L. Hydrolysis of dipalmitoylphosphatidylcholine large unilamellar vesicles by porcine pancreatic phospholipase A2. J Biol Chem. 1986 Apr 25;261(12):5334–5340. [PubMed] [Google Scholar]
  9. Maloney K. M., Grandbois M., Grainger D. W., Salesse C., Lewis K. A., Roberts M. F. Phospholipase A2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/water interface. Biochim Biophys Acta. 1995 May 4;1235(2):395–405. doi: 10.1016/0005-2736(95)80029-f. [DOI] [PubMed] [Google Scholar]
  10. Mou J., Yang J., Huang C., Shao Z. Alcohol induces interdigitated domains in unilamellar phosphatidylcholine bilayers. Biochemistry. 1994 Aug 23;33(33):9981–9985. doi: 10.1021/bi00199a022. [DOI] [PubMed] [Google Scholar]
  11. Mou J., Yang J., Shao Z. Tris(hydroxymethyl)aminomethane (C4H11NO3) induced a ripple phase in supported unilamellar phospholipid bilayers. Biochemistry. 1994 Apr 19;33(15):4439–4443. doi: 10.1021/bi00181a001. [DOI] [PubMed] [Google Scholar]
  12. Müller D. J., Schoenenberger C. A., Büldt G., Engel A. Immuno-atomic force microscopy of purple membrane. Biophys J. 1996 Apr;70(4):1796–1802. doi: 10.1016/S0006-3495(96)79743-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Op den Kamp J. A., Kauerz M. T., van Deenen L. L. Action of pancreatic phospholipase A2 on phosphatidylcholine bilayers in different physical states. Biochim Biophys Acta. 1975 Oct 6;406(2):169–177. doi: 10.1016/0005-2736(75)90001-2. [DOI] [PubMed] [Google Scholar]
  14. Patil G. S., Matthews R. H., Cornwell D. G. Kinetics of the processes of desorption from fatty acid monolayers. J Lipid Res. 1973 Jan;14(1):26–31. [PubMed] [Google Scholar]
  15. Radmacher M., Fritz M., Hansma H. G., Hansma P. K. Direct observation of enzyme activity with the atomic force microscope. Science. 1994 Sep 9;265(5178):1577–1579. doi: 10.1126/science.8079171. [DOI] [PubMed] [Google Scholar]
  16. Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
  17. Reynolds L. J., Washburn W. N., Deems R. A., Dennis E. A. Assay strategies and methods for phospholipases. Methods Enzymol. 1991;197:3–23. doi: 10.1016/0076-6879(91)97129-m. [DOI] [PubMed] [Google Scholar]
  18. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  19. Shao Z., Yang J. Progress in high resolution atomic force microscopy in biology. Q Rev Biophys. 1995 May;28(2):195–251. doi: 10.1017/s0033583500003061. [DOI] [PubMed] [Google Scholar]
  20. Speijer H., Giesen P. L., Zwaal R. F., Hack C. E., Hermens W. T. Critical micelle concentrations and stirring are rate limiting in the loss of lipid mass during membrane degradation by phospholipase A2. Biophys J. 1996 May;70(5):2239–2247. doi: 10.1016/S0006-3495(96)79789-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tamm L. K., McConnell H. M. Supported phospholipid bilayers. Biophys J. 1985 Jan;47(1):105–113. doi: 10.1016/S0006-3495(85)83882-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Verger R., Mieras M. C., de Haas G. H. Action of phospholipase A at interfaces. J Biol Chem. 1973 Jun 10;248(11):4023–4034. [PubMed] [Google Scholar]
  23. Vernon L. P., Bell J. D. Membrane structure, toxins and phospholipase A2 activity. Pharmacol Ther. 1992;54(3):269–295. doi: 10.1016/0163-7258(92)90003-i. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES