Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2434–2442. doi: 10.1016/S0006-3495(98)77951-2

Intramembrane molecular dipoles affect the membrane insertion and folding of a model amphiphilic peptide.

J Cladera 1, P O'Shea 1
PMCID: PMC1299585  PMID: 9591669

Abstract

The relationship between the dipole potential and the interaction of the mitochondrial amphipathic signal sequence known as p25 with model membranes has been studied using 1-(3-sulfonatopropyl)-4-[beta[2-(di-n-octyl-amino)-6-naphthyl]viny l] pyridinium betaine (di-8-ANEPPS) as a fluorescent probe. The dipole potential of phosphatidylcholine membranes was modified by incorporating into the bilayer the sterols phloretin and 6-ketocholestanol (KC), which decrease and increase the dipole potential, respectively. The results derived from the application of a dual-wavelength ratiometric fluorescence method for following the variation of the membrane dipole potential have shown that when p25 inserts into the lipidic bilayer, a decrease in the dipole potential takes place. The magnitude of this decrease depends on the initial value of the dipole potential, i.e., before interaction with the peptide. Thus, when KC was incorporated into the bilayer, the decrease caused by the membrane insertion of p25 was larger than that caused in PC membranes. Alternatively, in the presence of phloretin, the decrease in the potential caused by the peptide insertion was smaller. Complementary studies involving attenuated total reflectance-Fourier transform infrared spectroscopy of the peptide membrane interactions have shown that modification of the dipole potential affects the conformation of the peptide during the course of its interaction with the membrane. The presence of KC induces a higher amount of helicoidal structure. The presence of phloretin, however, does not appear to affect the secondary structure of the peptide. The differences observed in the dipole potential decreases caused by the presence of the peptide with the PC membranes and phloretin-PC membranes, therefore, must involve differences in the tertiary and, perhaps, quaternary conformations of p25.

Full Text

The Full Text of this article is available as a PDF (108.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROCKMAN H. Dipole potential of lipid membranes. Chem Phys Lipids. 1994 Sep 6;73(1-2):57–79. doi: 10.1016/0009-3084(94)90174-0. [DOI] [PubMed] [Google Scholar]
  2. Bechinger B., Seelig J. Interaction of electric dipoles with phospholipid head groups. A 2H and 31P NMR study of phloretin and phloretin analogues in phosphatidylcholine membranes. Biochemistry. 1991 Apr 23;30(16):3923–3929. doi: 10.1021/bi00230a017. [DOI] [PubMed] [Google Scholar]
  3. Bedlack R. S., Jr, Wei M. D., Fox S. H., Gross E., Loew L. M. Distinct electric potentials in soma and neurite membranes. Neuron. 1994 Nov;13(5):1187–1193. doi: 10.1016/0896-6273(94)90056-6. [DOI] [PubMed] [Google Scholar]
  4. Brasseur R., Pillot T., Lins L., Vandekerckhove J., Rosseneu M. Peptides in membranes: tipping the balance of membrane stability. Trends Biochem Sci. 1997 May;22(5):167–171. doi: 10.1016/s0968-0004(97)01047-5. [DOI] [PubMed] [Google Scholar]
  5. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers. 1986 Mar;25(3):469–487. doi: 10.1002/bip.360250307. [DOI] [PubMed] [Google Scholar]
  6. Cladera J., Sabés M., Padrós E. Fourier transform infrared analysis of bacteriorhodopsin secondary structure. Biochemistry. 1992 Dec 15;31(49):12363–12368. doi: 10.1021/bi00164a010. [DOI] [PubMed] [Google Scholar]
  7. Clarke R. J. Effect of lipid structure on the dipole potential of phosphatidylcholine bilayers. Biochim Biophys Acta. 1997 Jul 25;1327(2):269–278. doi: 10.1016/s0005-2736(97)00075-8. [DOI] [PubMed] [Google Scholar]
  8. Clarke R. J., Kane D. J. Optical detection of membrane dipole potential: avoidance of fluidity and dye-induced effects. Biochim Biophys Acta. 1997 Jan 31;1323(2):223–239. doi: 10.1016/s0005-2736(96)00188-5. [DOI] [PubMed] [Google Scholar]
  9. Franklin J. C., Cafiso D. S. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J. 1993 Jul;65(1):289–299. doi: 10.1016/S0006-3495(93)81051-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Golding C., Senior S., Wilson M. T., O'Shea P. Time resolution of binding and membrane insertion of a mitochondrial signal peptide: correlation with structural changes and evidence for cooperativity. Biochemistry. 1996 Aug 20;35(33):10931–10937. doi: 10.1021/bi960905i. [DOI] [PubMed] [Google Scholar]
  11. Goormaghtigh E., Martin I., Vandenbranden M., Brasseur R., Ruysschaert J. M. Secondary structure and orientation of a chemically synthesized mitochondrial signal sequence in phospholipid bilayers. Biochem Biophys Res Commun. 1989 Jan 31;158(2):610–616. doi: 10.1016/s0006-291x(89)80093-2. [DOI] [PubMed] [Google Scholar]
  12. Gross E., Bedlack R. S., Jr, Loew L. M. Dual-wavelength ratiometric fluorescence measurement of the membrane dipole potential. Biophys J. 1994 Jul;67(1):208–216. doi: 10.1016/S0006-3495(94)80471-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kienker P. K., DeGrado W. F., Lear J. D. A helical-dipole model describes the single-channel current rectification of an uncharged peptide ion channel. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4859–4863. doi: 10.1073/pnas.91.11.4859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krimm S., Bandekar J. Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Protein Chem. 1986;38:181–364. doi: 10.1016/s0065-3233(08)60528-8. [DOI] [PubMed] [Google Scholar]
  15. Leenhouts J. M., Török Z., Demel R. A., de Gier J., de Kruijff B. The full length of a mitochondrial presequence is required for efficient monolayer insertion and interbilayer contact formation. Mol Membr Biol. 1994 Jul-Sep;11(3):159–164. doi: 10.3109/09687689409162234. [DOI] [PubMed] [Google Scholar]
  16. Loew L. M., Cohen L. B., Dix J., Fluhler E. N., Montana V., Salama G., Wu J. Y. A naphthyl analog of the aminostyryl pyridinium class of potentiometric membrane dyes shows consistent sensitivity in a variety of tissue, cell, and model membrane preparations. J Membr Biol. 1992 Oct;130(1):1–10. doi: 10.1007/BF00233734. [DOI] [PubMed] [Google Scholar]
  17. Loew L. M., Scully S., Simpson L., Waggoner A. S. Evidence for a charge-shift electrochromic mechanism in a probe of membrane potential. Nature. 1979 Oct 11;281(5731):497–499. doi: 10.1038/281497a0. [DOI] [PubMed] [Google Scholar]
  18. McLaughlin S. The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem. 1989;18:113–136. doi: 10.1146/annurev.bb.18.060189.000553. [DOI] [PubMed] [Google Scholar]
  19. Montana V., Farkas D. L., Loew L. M. Dual-wavelength ratiometric fluorescence measurements of membrane potential. Biochemistry. 1989 May 30;28(11):4536–4539. doi: 10.1021/bi00437a003. [DOI] [PubMed] [Google Scholar]
  20. Muga A., Surewicz W. K., Wong P. T., Mantsch H. H. Structural studies with the uveopathogenic peptide M derived from retinal S-antigen. Biochemistry. 1990 Mar 27;29(12):2925–2930. doi: 10.1021/bi00464a006. [DOI] [PubMed] [Google Scholar]
  21. Rokitskaya T. I., Antonenko Y. N., Kotova E. A. Effect of the dipole potential of a bilayer lipid membrane on gramicidin channel dissociation kinetics. Biophys J. 1997 Aug;73(2):850–854. doi: 10.1016/S0006-3495(97)78117-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Seelig J., Macdonald P. M., Scherer P. G. Phospholipid head groups as sensors of electric charge in membranes. Biochemistry. 1987 Dec 1;26(24):7535–7541. doi: 10.1021/bi00398a001. [DOI] [PubMed] [Google Scholar]
  23. Simon S. A., McIntosh T. J., Magid A. D., Needham D. Modulation of the interbilayer hydration pressure by the addition of dipoles at the hydrocarbon/water interface. Biophys J. 1992 Mar;61(3):786–799. doi: 10.1016/S0006-3495(92)81883-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Surewicz W. K., Mantsch H. H. New insight into protein secondary structure from resolution-enhanced infrared spectra. Biochim Biophys Acta. 1988 Jan 29;952(2):115–130. doi: 10.1016/0167-4838(88)90107-0. [DOI] [PubMed] [Google Scholar]
  25. Surewicz W. K., Mantsch H. H., Stahl G. L., Epand R. M. Infrared spectroscopic evidence of conformational transitions of an atrial natriuretic peptide. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7028–7030. doi: 10.1073/pnas.84.20.7028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Swanson S. T., Roise D. Binding of a mitochondrial presequence to natural and artificial membranes: role of surface potential. Biochemistry. 1992 Jun 30;31(25):5746–5751. doi: 10.1021/bi00140a009. [DOI] [PubMed] [Google Scholar]
  27. Tamm L. K., Bartoldus I. Secondary structure of a mitochondrial signal peptide in lipid bilayer membranes. FEBS Lett. 1990 Oct 15;272(1-2):29–33. doi: 10.1016/0014-5793(90)80441-k. [DOI] [PubMed] [Google Scholar]
  28. Török Z., Demel R. A., Leenhouts J. M., de Kruijff B. Presequence-mediated intermembrane contact formation and lipid flow. A model membrane study. Biochemistry. 1994 May 10;33(18):5589–5594. doi: 10.1021/bi00184a030. [DOI] [PubMed] [Google Scholar]
  29. Wall J., Golding C. A., Van Veen M., O'Shea P. The use of fluoresceinphosphatidylethanolamine (FPE) as a real-time probe for peptide-membrane interactions. Mol Membr Biol. 1995 Apr-Jun;12(2):183–192. doi: 10.3109/09687689509027506. [DOI] [PubMed] [Google Scholar]
  30. Zhang J., Loew L. M., Davidson R. M. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells. Biophys J. 1996 Nov;71(5):2501–2508. doi: 10.1016/S0006-3495(96)79443-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES