Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2443–2450. doi: 10.1016/S0006-3495(98)77952-4

Direct detection of domains in phospholipid bilayers by grazing incidence diffraction of neutrons and atomic force microscopy.

C Gliss 1, H Clausen-Schaumann 1, R Günther 1, S Odenbach 1, O Randl 1, T M Bayerl 1
PMCID: PMC1299586  PMID: 9591670

Abstract

The geometry of domains in phospholipid bilayers of binary (1:1) mixtures of synthetic lecithins with a difference in chain length of four methylene groups has been studied by two independent, direct and complementary methods. Grazing incidence diffraction of neutrons provided gel domain sizes of less than 10 nm in both the gel and the coexistence phase of the mixture, while no domains were detected for the fluid phase. For the coexistence region, the neutron data suggest that domains grow in number rather than in size with decreasing temperature. Atomic force microscopy was used to study gel phase size and shape of the domains. The domains imaged by atomic force microscopy exhibit a rather irregular shape with an average size of 10 nm, thus confirming the neutron results for this phase. The good agreement between atomic force microscopy and neutron results, despite the completely different nature of their observables, has potential for the future development of refined models for the interpretation of neutron data from heterogeneous membranes in terms of regularly spaced and spatially extended scatterers.

Full Text

The Full Text of this article is available as a PDF (182.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almeida P. F., Vaz W. L., Thompson T. E. Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry. 1992 Aug 11;31(31):7198–7210. doi: 10.1021/bi00146a024. [DOI] [PubMed] [Google Scholar]
  2. Brumm T., Jørgensen K., Mouritsen O. G., Bayerl T. M. The effect of increasing membrane curvature on the phase transition and mixing behavior of a dimyristoyl-sn-glycero-3-phosphatidylcholine/ distearoyl-sn-glycero-3-phosphatidylcholine lipid mixture as studied by Fourier transform infrared spectroscopy and differential scanning calorimetry. Biophys J. 1996 Mar;70(3):1373–1379. doi: 10.1016/S0006-3495(96)79695-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Büldt G., Gally H. U., Seelig A., Seelig J., Zaccai G. Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature. 1978 Jan 12;271(5641):182–184. doi: 10.1038/271182a0. [DOI] [PubMed] [Google Scholar]
  4. Dosch H, Batterman BW, Wack DC. Depth-controlled grazing-incidence diffraction of synchrotron x radiation. Phys Rev Lett. 1986 Mar 17;56(11):1144–1147. doi: 10.1103/PhysRevLett.56.1144. [DOI] [PubMed] [Google Scholar]
  5. Groves J. T., Ulman N., Boxer S. G. Micropatterning fluid lipid bilayers on solid supports. Science. 1997 Jan 31;275(5300):651–653. doi: 10.1126/science.275.5300.651. [DOI] [PubMed] [Google Scholar]
  6. He K., Ludtke S. J., Worcester D. L., Huang H. W. Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J. 1996 Jun;70(6):2659–2666. doi: 10.1016/S0006-3495(96)79835-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Johnson S. J., Bayerl T. M., McDermott D. C., Adam G. W., Rennie A. R., Thomas R. K., Sackmann E. Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J. 1991 Feb;59(2):289–294. doi: 10.1016/S0006-3495(91)82222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jørgensen K., Sperotto M. M., Mouritsen O. G., Ipsen J. H., Zuckermann M. J. Phase equilibria and local structure in binary lipid bilayers. Biochim Biophys Acta. 1993 Oct 10;1152(1):135–145. doi: 10.1016/0005-2736(93)90240-z. [DOI] [PubMed] [Google Scholar]
  9. Knoll W., Ibel K., Sackmann E. Small-angle neutron scattering study of lipid phase diagrams by the contrast variation method. Biochemistry. 1981 Oct 27;20(22):6379–6383. doi: 10.1021/bi00525a015. [DOI] [PubMed] [Google Scholar]
  10. Knoll W., Schmidt G., Rötzer H., Henkel T., Pfeiffer W., Sackmann E., Mittler-Neher S., Spinke J. Lateral order in binary lipid alloys and its coupling to membrane functions. Chem Phys Lipids. 1991 Mar;57(2-3):363–374. doi: 10.1016/0009-3084(91)90086-q. [DOI] [PubMed] [Google Scholar]
  11. Lee A. G. Lipid phase transitions and phase diagrams. I. Lipid phase transitions. Biochim Biophys Acta. 1977 Aug 9;472(2):237–281. doi: 10.1016/0304-4157(77)90018-1. [DOI] [PubMed] [Google Scholar]
  12. Loidl-Stahlhofen A., Kaufmann S., Braunschweig T., Bayerl T. M. The thermodynamic control of protein binding to lipid bilayers for protein chromatography. Nat Biotechnol. 1996 Aug;14(8):999–1002. doi: 10.1038/nbt0896-999. [DOI] [PubMed] [Google Scholar]
  13. McConnell H. M., Tamm L. K., Weis R. M. Periodic structures in lipid monolayer phase transitions. Proc Natl Acad Sci U S A. 1984 May;81(10):3249–3253. doi: 10.1073/pnas.81.10.3249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mendelsohn R., Liang G. L., Strauss H. L., Snyder R. G. IR spectroscopic determination of gel state miscibility in long-chain phosphatidylcholine mixtures. Biophys J. 1995 Nov;69(5):1987–1998. doi: 10.1016/S0006-3495(95)80069-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mouritsen O. G. Theoretical models of phospholipid phase transitions. Chem Phys Lipids. 1991 Mar;57(2-3):179–194. doi: 10.1016/0009-3084(91)90075-m. [DOI] [PubMed] [Google Scholar]
  16. Möhwald H. Phospholipid and phospholipid-protein monolayers at the air/water interface. Annu Rev Phys Chem. 1990;41:441–476. doi: 10.1146/annurev.pc.41.100190.002301. [DOI] [PubMed] [Google Scholar]
  17. Nagle J. F., Wiener M. C. Structure of fully hydrated bilayer dispersions. Biochim Biophys Acta. 1988 Jul 7;942(1):1–10. doi: 10.1016/0005-2736(88)90268-4. [DOI] [PubMed] [Google Scholar]
  18. Nagle J. F., Wilkinson D. A. Lecithin bilayers. Density measurement and molecular interactions. Biophys J. 1978 Aug;23(2):159–175. doi: 10.1016/S0006-3495(78)85441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pedersen S., Jørgensen K., Baekmark T. R., Mouritsen O. G. Indirect evidence for lipid-domain formation in the transition region of phospholipid bilayers by two-probe fluorescence energy transfer. Biophys J. 1996 Aug;71(2):554–560. doi: 10.1016/S0006-3495(96)79279-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Radmacher M., Fritz M., Hansma H. G., Hansma P. K. Direct observation of enzyme activity with the atomic force microscope. Science. 1994 Sep 9;265(5178):1577–1579. doi: 10.1126/science.8079171. [DOI] [PubMed] [Google Scholar]
  21. Sankaram M. B., Marsh D., Thompson T. E. Determination of fluid and gel domain sizes in two-component, two-phase lipid bilayers. An electron spin resonance spin label study. Biophys J. 1992 Aug;63(2):340–349. doi: 10.1016/S0006-3495(92)81619-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shao Z., Yang J. Progress in high resolution atomic force microscopy in biology. Q Rev Biophys. 1995 May;28(2):195–251. doi: 10.1017/s0033583500003061. [DOI] [PubMed] [Google Scholar]
  23. Tate M. W., Eikenberry E. F., Turner D. C., Shyamsunder E., Gruner S. M. Nonbilayer phases of membrane lipids. Chem Phys Lipids. 1991 Mar;57(2-3):147–164. doi: 10.1016/0009-3084(91)90073-k. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES