Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2515–2530. doi: 10.1016/S0006-3495(98)77960-3

The elastic rod model for DNA and its application to the tertiary structure of DNA minicircles in mononucleosomes.

D Swigon 1, B D Coleman 1, I Tobias 1
PMCID: PMC1299594  PMID: 9591678

Abstract

Explicit solutions to the equations of equilibrium in the theory of the elastic rod model for DNA are employed to develop a procedure for finding the configuration that minimizes the elastic energy of a minicircle in a mononucleosome with specified values of the minicircle size N in base pairs, the extent w of wrapping of DNA about the histone core particle, the helical repeat h(0)b of the bound DNA, and the linking number Lk of the minicircle. The procedure permits a determination of the set Y(N, w, h(0)b) of integral values of Lk for which the minimum energy configuration does not involve self-contact, and graphs of writhe versus w are presented for such values of Lk. For the range of N of interest here, 330 < N < 370, the set Y(N, w, h(0)b) is of primary importance: when Lk is not in Y(N, w, h(0)b), the configurations compatible with Lk have elastic energies high enough to preclude the occurrence of an observable concentration of topoisomer Lk in an equilibrium distribution of topoisomers. Equilibrium distributions of Lk, calculated by setting differences in the free energy of the extranucleosomal loop equal to differences in equilibrium elastic energy, are found to be very close to Gaussian when computed under the assumption that w is fixed, but far from Gaussian when it is assumed that w fluctuates between two values. The theoretical results given suggest a method by which one may calculate DNA-histone binding energies from measured equilibrium distributions of Lk.

Full Text

The Full Text of this article is available as a PDF (222.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arents G., Moudrianakis E. N. Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10489–10493. doi: 10.1073/pnas.90.22.10489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Felsenfeld G. Chromatin unfolds. Cell. 1996 Jul 12;86(1):13–19. doi: 10.1016/s0092-8674(00)80073-2. [DOI] [PubMed] [Google Scholar]
  3. Fuller F. B. The writhing number of a space curve. Proc Natl Acad Sci U S A. 1971 Apr;68(4):815–819. doi: 10.1073/pnas.68.4.815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goulet I., Zivanovic Y., Prunell A., Revet B. Chromatin reconstitution on small DNA rings. I. J Mol Biol. 1988 Mar 20;200(2):253–266. doi: 10.1016/0022-2836(88)90238-0. [DOI] [PubMed] [Google Scholar]
  5. Hagerman P. J. Flexibility of DNA. Annu Rev Biophys Biophys Chem. 1988;17:265–286. doi: 10.1146/annurev.bb.17.060188.001405. [DOI] [PubMed] [Google Scholar]
  6. Hamiche A., Prunell A. Chromatin reconstitution on small DNA rings. V. DNA thermal flexibility of single nucleosomes. J Mol Biol. 1992 Nov 20;228(2):327–337. doi: 10.1016/0022-2836(92)90821-z. [DOI] [PubMed] [Google Scholar]
  7. Hayes J. J., Clark D. J., Wolffe A. P. Histone contributions to the structure of DNA in the nucleosome. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6829–6833. doi: 10.1073/pnas.88.15.6829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hayes J. J., Tullius T. D., Wolffe A. P. The structure of DNA in a nucleosome. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7405–7409. doi: 10.1073/pnas.87.19.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horowitz D. S., Wang J. C. Torsional rigidity of DNA and length dependence of the free energy of DNA supercoiling. J Mol Biol. 1984 Feb 15;173(1):75–91. doi: 10.1016/0022-2836(84)90404-2. [DOI] [PubMed] [Google Scholar]
  10. Katritch V., Vologodskii A. The effect of intrinsic curvature on conformational properties of circular DNA. Biophys J. 1997 Mar;72(3):1070–1079. doi: 10.1016/S0006-3495(97)78757-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  12. Lutter L. C. Precise location of DNase I cutting sites in the nucleosome core determined by high resolution gel electrophoresis. Nucleic Acids Res. 1979 Jan;6(1):41–56. doi: 10.1093/nar/6.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Polach K. J., Widom J. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J Mol Biol. 1996 May 24;258(5):800–812. doi: 10.1006/jmbi.1996.0288. [DOI] [PubMed] [Google Scholar]
  14. Polach K. J., Widom J. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J Mol Biol. 1995 Nov 24;254(2):130–149. doi: 10.1006/jmbi.1995.0606. [DOI] [PubMed] [Google Scholar]
  15. Prunell A., Kornberg R. D., Lutter L., Klug A., Levitt M., Crick F. H. Periodicity of deoxyribonuclease I digestion of chromatin. Science. 1979 May 25;204(4395):855–858. doi: 10.1126/science.441739. [DOI] [PubMed] [Google Scholar]
  16. Prunell A. Periodicity of exonuclease III digestion of chromatin and the pitch of deoxyribonucleic acid on the nucleosome. Biochemistry. 1983 Oct 11;22(21):4887–4894. doi: 10.1021/bi00290a004. [DOI] [PubMed] [Google Scholar]
  17. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  18. Shore D., Baldwin R. L. Energetics of DNA twisting. II. Topoisomer analysis. J Mol Biol. 1983 Nov 15;170(4):983–1007. doi: 10.1016/s0022-2836(83)80199-5. [DOI] [PubMed] [Google Scholar]
  19. Sutcliffe J. G. Complete nucleotide sequence of the Escherichia coli plasmid pBR322. Cold Spring Harb Symp Quant Biol. 1979;43(Pt 1):77–90. doi: 10.1101/sqb.1979.043.01.013. [DOI] [PubMed] [Google Scholar]
  20. Sutcliffe J. G. pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acids Res. 1978 Aug;5(8):2721–2728. doi: 10.1093/nar/5.8.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tobias I. A theory of thermal fluctuations in DNA miniplasmids. Biophys J. 1998 May;74(5):2545–2553. doi: 10.1016/S0006-3495(98)77962-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Watson N. A new revision of the sequence of plasmid pBR322. Gene. 1988 Oct 30;70(2):399–403. doi: 10.1016/0378-1119(88)90212-0. [DOI] [PubMed] [Google Scholar]
  23. Zhang P., Tobias I., Olson W. K. Computer simulation of protein-induced structural changes in closed circular DNA. J Mol Biol. 1994 Sep 23;242(3):271–290. doi: 10.1006/jmbi.1994.1578. [DOI] [PubMed] [Google Scholar]
  24. Zivanovic Y., Goulet I., Revet B., Le Bret M., Prunell A. Chromatin reconstitution on small DNA rings. II. DNA supercoiling on the nucleosome. J Mol Biol. 1988 Mar 20;200(2):267–290. doi: 10.1016/0022-2836(88)90239-2. [DOI] [PubMed] [Google Scholar]
  25. Zivanovic Y., Goulet I., Revet B., Le Bret M., Prunell A. Chromatin reconstitution on small DNA rings. II. DNA supercoiling on the nucleosome. J Mol Biol. 1988 Mar 20;200(2):267–290. doi: 10.1016/0022-2836(88)90239-2. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES