Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2554–2566. doi: 10.1016/S0006-3495(98)77963-9

Chromatin fiber structure: morphology, molecular determinants, structural transitions.

J Zlatanova 1, S H Leuba 1, K van Holde 1
PMCID: PMC1299597  PMID: 9591681

Abstract

Despite more than 20 years of research, the structure of the chromatin fiber and its molecular determinants remain enigmatic. Recent developments in high-resolution microscopic techniques, as well as the application of mathematical modeling to chromatin fiber structure, have allowed the acquisition of some new insights into the structure and its determinants. Here we present some of the newest data on the structure of the chromatin fiber in both its extended and compacted states, and bring together this new knowledge with older data in an attempt to provide a unified view of how chromatin components interact with each other to form its various conformations. The structural transitions that are believed to take place during transcriptional activation and its cessation are also discussed. It becomes obvious that despite some progress in our understanding of the fiber structure and its dynamics, huge gaps continue to exist. Bridging these gaps will require further improvements in already available techniques and the introduction of completely new approaches.

Full Text

The Full Text of this article is available as a PDF (459.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLFREY V. G., FAULKNER R., MIRSKY A. E. ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS. Proc Natl Acad Sci U S A. 1964 May;51:786–794. doi: 10.1073/pnas.51.5.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allan J., Harborne N., Rau D. C., Gould H. Participation of core histone "tails" in the stabilization of the chromatin solenoid. J Cell Biol. 1982 May;93(2):285–297. doi: 10.1083/jcb.93.2.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allan J., Hartman P. G., Crane-Robinson C., Aviles F. X. The structure of histone H1 and its location in chromatin. Nature. 1980 Dec 25;288(5792):675–679. doi: 10.1038/288675a0. [DOI] [PubMed] [Google Scholar]
  4. Allan J., Mitchell T., Harborne N., Bohm L., Crane-Robinson C. Roles of H1 domains in determining higher order chromatin structure and H1 location. J Mol Biol. 1986 Feb 20;187(4):591–601. doi: 10.1016/0022-2836(86)90337-2. [DOI] [PubMed] [Google Scholar]
  5. Arents G., Burlingame R. W., Wang B. C., Love W. E., Moudrianakis E. N. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10148–10152. doi: 10.1073/pnas.88.22.10148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Arents G., Moudrianakis E. N. Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10489–10493. doi: 10.1073/pnas.90.22.10489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bauer W. R., Hayes J. J., White J. H., Wolffe A. P. Nucleosome structural changes due to acetylation. J Mol Biol. 1994 Feb 25;236(3):685–690. doi: 10.1006/jmbi.1994.1180. [DOI] [PubMed] [Google Scholar]
  8. Bednar J., Horowitz R. A., Dubochet J., Woodcock C. L. Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy. J Cell Biol. 1995 Dec;131(6 Pt 1):1365–1376. doi: 10.1083/jcb.131.6.1365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–933. doi: 10.1103/PhysRevLett.56.930. [DOI] [PubMed] [Google Scholar]
  10. Boulikas T., Wiseman J. M., Garrard W. T. Points of contact between histone H1 and the histone octamer. Proc Natl Acad Sci U S A. 1980 Jan;77(1):127–131. doi: 10.1073/pnas.77.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brownell J. E., Allis C. D. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev. 1996 Apr;6(2):176–184. doi: 10.1016/s0959-437x(96)80048-7. [DOI] [PubMed] [Google Scholar]
  12. Brownell J. E., Zhou J., Ranalli T., Kobayashi R., Edmondson D. G., Roth S. Y., Allis C. D. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell. 1996 Mar 22;84(6):843–851. doi: 10.1016/s0092-8674(00)81063-6. [DOI] [PubMed] [Google Scholar]
  13. Butler P. J., Thomas J. O. Changes in chromatin folding in solution. J Mol Biol. 1980 Jul 15;140(4):505–529. doi: 10.1016/0022-2836(80)90268-5. [DOI] [PubMed] [Google Scholar]
  14. COREY R. B., PAULING L. Fundamental dimensions of polypeptide chains. Proc R Soc Lond B Biol Sci. 1953 Mar 11;141(902):10–20. doi: 10.1098/rspb.1953.0011. [DOI] [PubMed] [Google Scholar]
  15. Clark D. J., Kimura T. Electrostatic mechanism of chromatin folding. J Mol Biol. 1990 Feb 20;211(4):883–896. doi: 10.1016/0022-2836(90)90081-V. [DOI] [PubMed] [Google Scholar]
  16. Fletcher T. M., Hansen J. C. Core histone tail domains mediate oligonucleosome folding and nucleosomal DNA organization through distinct molecular mechanisms. J Biol Chem. 1995 Oct 27;270(43):25359–25362. doi: 10.1074/jbc.270.43.25359. [DOI] [PubMed] [Google Scholar]
  17. Furrer P., Bednar J., Dubochet J., Hamiche A., Prunell A. DNA at the entry-exit of the nucleosome observed by cryoelectron microscopy. J Struct Biol. 1995 May-Jun;114(3):177–183. doi: 10.1006/jsbi.1995.1017. [DOI] [PubMed] [Google Scholar]
  18. Garcia-Ramirez M., Dong F., Ausio J. Role of the histone "tails" in the folding of oligonucleosomes depleted of histone H1. J Biol Chem. 1992 Sep 25;267(27):19587–19595. [PubMed] [Google Scholar]
  19. Hamiche A., Schultz P., Ramakrishnan V., Oudet P., Prunell A. Linker histone-dependent DNA structure in linear mononucleosomes. J Mol Biol. 1996 Mar 22;257(1):30–42. doi: 10.1006/jmbi.1996.0144. [DOI] [PubMed] [Google Scholar]
  20. Hartman P. G., Chapman G. E., Moss T., Bradbury E. M. Studies on the role and mode of operation of the very-lysine-rich histone H1 in eukaryote chromatin. The three structural regions of the histone H1 molecule. Eur J Biochem. 1977 Jul 1;77(1):45–51. doi: 10.1111/j.1432-1033.1977.tb11639.x. [DOI] [PubMed] [Google Scholar]
  21. Hebbes T. R., Clayton A. L., Thorne A. W., Crane-Robinson C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J. 1994 Apr 15;13(8):1823–1830. doi: 10.1002/j.1460-2075.1994.tb06451.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hebbes T. R., Thorne A. W., Clayton A. L., Crane-Robinson C. Histone acetylation and globin gene switching. Nucleic Acids Res. 1992 Mar 11;20(5):1017–1022. doi: 10.1093/nar/20.5.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hu J., Xiao X. D., Ogletree D. F., Salmeron M. Imaging the condensation and evaporation of molecularly thin films of water with nanometer resolution. Science. 1995 Apr 14;268(5208):267–269. doi: 10.1126/science.268.5208.267. [DOI] [PubMed] [Google Scholar]
  24. Ivanchenko M., Hassan A., van Holde K., Zlatanova J. H1 binding unwinds DNA. Evidence from topological assays. J Biol Chem. 1996 Dec 20;271(51):32580–32585. doi: 10.1074/jbc.271.51.32580. [DOI] [PubMed] [Google Scholar]
  25. Ivanchenko M., Zlatanova J., Varga-Weisz P., Hassan A., van Holde K. Linker histones affect patterns of digestion of supercoiled plasmids by single-strand-specific nucleases. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):6970–6974. doi: 10.1073/pnas.93.14.6970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Krajewski W. A., Luchnik A. N. Relationship of histone acetylation to DNA topology and transcription. Mol Gen Genet. 1991 Dec;230(3):442–448. doi: 10.1007/BF00280301. [DOI] [PubMed] [Google Scholar]
  27. Leuba S. H., Yang G., Robert C., Samori B., van Holde K., Zlatanova J., Bustamante C. Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11621–11625. doi: 10.1073/pnas.91.24.11621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Loidl P. Histone acetylation: facts and questions. Chromosoma. 1994 Dec;103(7):441–449. doi: 10.1007/BF00337382. [DOI] [PubMed] [Google Scholar]
  29. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  30. Lutter L. C., Judis L., Paretti R. F. Effects of histone acetylation on chromatin topology in vivo. Mol Cell Biol. 1992 Nov;12(11):5004–5014. doi: 10.1128/mcb.12.11.5004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nacheva G. A., Guschin D. Y., Preobrazhenskaya O. V., Karpov V. L., Ebralidse K. K., Mirzabekov A. D. Change in the pattern of histone binding to DNA upon transcriptional activation. Cell. 1989 Jul 14;58(1):27–36. doi: 10.1016/0092-8674(89)90399-1. [DOI] [PubMed] [Google Scholar]
  32. Norton V. G., Imai B. S., Yau P., Bradbury E. M. Histone acetylation reduces nucleosome core particle linking number change. Cell. 1989 May 5;57(3):449–457. doi: 10.1016/0092-8674(89)90920-3. [DOI] [PubMed] [Google Scholar]
  33. Norton V. G., Marvin K. W., Yau P., Bradbury E. M. Nucleosome linking number change controlled by acetylation of histones H3 and H4. J Biol Chem. 1990 Nov 15;265(32):19848–19852. [PubMed] [Google Scholar]
  34. Pehrson J. R. Probing the conformation of nucleosome linker DNA in situ with pyrimidine dimer formation. J Biol Chem. 1995 Sep 22;270(38):22440–22444. [PubMed] [Google Scholar]
  35. Pehrson J. R. Thymine dimer formation as a probe of the path of DNA in and between nucleosomes in intact chromatin. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9149–9153. doi: 10.1073/pnas.86.23.9149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pruss D., Bartholomew B., Persinger J., Hayes J., Arents G., Moudrianakis E. N., Wolffe A. P. An asymmetric model for the nucleosome: a binding site for linker histones inside the DNA gyres. Science. 1996 Oct 25;274(5287):614–617. doi: 10.1126/science.274.5287.614. [DOI] [PubMed] [Google Scholar]
  37. Renz M., Nehls P., Hozier J. Involvement of histone H1 in the organization of the chromosome fiber. Proc Natl Acad Sci U S A. 1977 May;74(5):1879–1883. doi: 10.1073/pnas.74.5.1879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Richmond T. J., Finch J. T., Rushton B., Rhodes D., Klug A. Structure of the nucleosome core particle at 7 A resolution. Nature. 1984 Oct 11;311(5986):532–537. doi: 10.1038/311532a0. [DOI] [PubMed] [Google Scholar]
  39. Simpson R. T., Thoma F., Brubaker J. M. Chromatin reconstituted from tandemly repeated cloned DNA fragments and core histones: a model system for study of higher order structure. Cell. 1985 Oct;42(3):799–808. doi: 10.1016/0092-8674(85)90276-4. [DOI] [PubMed] [Google Scholar]
  40. Sternglanz R. Histone acetylation: a gateway to transcriptional activation. Trends Biochem Sci. 1996 Oct;21(10):357–358. [PubMed] [Google Scholar]
  41. Thoma F., Koller T., Klug A. Involvement of histone H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol. 1979 Nov;83(2 Pt 1):403–427. doi: 10.1083/jcb.83.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Thomsen B., Bendixen C., Westergaard O. Histone hyperacetylation is accompanied by changes in DNA topology in vivo. Eur J Biochem. 1991 Oct 1;201(1):107–111. doi: 10.1111/j.1432-1033.1991.tb16262.x. [DOI] [PubMed] [Google Scholar]
  43. Woodcock C. L., Grigoryev S. A., Horowitz R. A., Whitaker N. A chromatin folding model that incorporates linker variability generates fibers resembling the native structures. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9021–9025. doi: 10.1073/pnas.90.19.9021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Woodcock C. L., Horowitz R. A. Chromatin organization re-viewed. Trends Cell Biol. 1995 Jul;5(7):272–277. doi: 10.1016/s0962-8924(00)89038-8. [DOI] [PubMed] [Google Scholar]
  45. Yang G., Leuba S. H., Bustamante C., Zlatanova J., van Holde K. Role of linker histones in extended chromatin fibre structure. Nat Struct Biol. 1994 Nov;1(11):761–763. doi: 10.1038/nsb1194-761. [DOI] [PubMed] [Google Scholar]
  46. Zivanovic Y., Duband-Goulet I., Schultz P., Stofer E., Oudet P., Prunell A. Chromatin reconstitution on small DNA rings. III. Histone H5 dependence of DNA supercoiling in the nucleosome. J Mol Biol. 1990 Jul 20;214(2):479–495. doi: 10.1016/0022-2836(90)90195-R. [DOI] [PubMed] [Google Scholar]
  47. Zlatanova J., Van Holde K. Histone H1 and transcription: still an enigma? J Cell Sci. 1992 Dec;103(Pt 4):889–895. doi: 10.1242/jcs.103.4.889. [DOI] [PubMed] [Google Scholar]
  48. Zlatanova J., van Holde K. The linker histones and chromatin structure: new twists. Prog Nucleic Acid Res Mol Biol. 1996;52:217–259. doi: 10.1016/s0079-6603(08)60968-x. [DOI] [PubMed] [Google Scholar]
  49. van Holde K., Zlatanova J. Chromatin higher order structure: chasing a mirage? J Biol Chem. 1995 Apr 14;270(15):8373–8376. doi: 10.1074/jbc.270.15.8373. [DOI] [PubMed] [Google Scholar]
  50. van Holde K., Zlatanova J. What determines the folding of the chromatin fiber? Proc Natl Acad Sci U S A. 1996 Oct 1;93(20):10548–10555. doi: 10.1073/pnas.93.20.10548. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES