Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2588–2600. doi: 10.1016/S0006-3495(98)77965-2

The protein environment surrounding tyrosyl radicals D. and Z. in photosystem II: a difference Fourier-transform infrared spectroscopic study.

S Kim 1, B A Barry 1
PMCID: PMC1299599  PMID: 9591683

Abstract

Photosystem II contains two redox-active tyrosine residues, termed D and Z, which have different midpoint potentials and oxidation/reduction kinetics. To understand the functional properties of redox-active tyrosines, we report a difference Fourier-transform infrared (FT-IR) spectroscopic study of these species. Vibrational spectra associated with the oxidation of each tyrosine residue are acquired; electron paramagnetic resonance (EPR) and fluorescence experiments demonstrate that there is no detectable contribution of Q(A)- to these spectra. Vibrational lines are assigned to the radicals by isotopic labeling of tyrosine. Global 15N labeling, 2H exchange, and changes in pH identify differences in the reversible interactions of the two redox-active tyrosines with N-containing, titratable amino acid side chains in their environments. To identify the amino acid residue that contributes to the spectrum of D, mutations at His189 in the D2 polypeptide were examined. Mutations at this site result in substantial changes in the spectrum of tyrosine D. Previously, mutations at the analogous histidine, His190 in the D1 polypeptide, were shown to have no significant effect on the FT-IR spectrum of tyrosine Z (Bernard, M. T., et al. 1995. J. Biol. Chem. 270:1589-1594). A disparity in the number of accessible, proton-accepting groups could influence electron transfer rates and energetics and account for functional differences between the two redox-active tyrosines.

Full Text

The Full Text of this article is available as a PDF (175.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babcock G. T., Blankenship R. E., Sauer K. Reaction kinetics for positive charge accumulation on the water side of chloroplast photosystem II. FEBS Lett. 1976 Jan 15;61(2):286–289. doi: 10.1016/0014-5793(76)81058-7. [DOI] [PubMed] [Google Scholar]
  2. Babcock G. T., Sauer K. A rapid, light-induced transient in electron paramagnetic resonance signal II activated upon inhibition of photosynthetic oxygen evolution. Biochim Biophys Acta. 1975 Feb 17;376(2):315–328. doi: 10.1016/0005-2728(75)90024-9. [DOI] [PubMed] [Google Scholar]
  3. Babcock G. T., Sauer K. Electron paramagnetic resonance signal II in spinach chloroplasts. I. Kinetic analysis for untreated chloroplasts. Biochim Biophys Acta. 1973 Dec 14;325(3):483–503. doi: 10.1016/0005-2728(73)90209-0. [DOI] [PubMed] [Google Scholar]
  4. Babcock G. T., Sauer K. Electron paramagnetic resonance signal II in spinach chloroplasts. II. Alternative spectral forms and inhibitor effects on kinetics of signal II in flashing light. Biochim Biophys Acta. 1973 Dec 14;325(3):504–519. doi: 10.1016/0005-2728(73)90210-7. [DOI] [PubMed] [Google Scholar]
  5. Babcock G. T., Sauer K. The rapid component of electron paramagnetic resonance signal II: a candidate for the physiological donor to photosystem II in spinach chloroplasts. Biochim Biophys Acta. 1975 Feb 17;376(2):329–344. doi: 10.1016/0005-2728(75)90025-0. [DOI] [PubMed] [Google Scholar]
  6. Backes G., Sahlin M., Sjöberg B. M., Loehr T. M., Sanders-Loehr J. Resonance Raman spectroscopy of ribonucleotide reductase. Evidence for a deprotonated tyrosyl radical and photochemistry of the binuclear iron center. Biochemistry. 1989 Feb 21;28(4):1923–1929. doi: 10.1021/bi00430a074. [DOI] [PubMed] [Google Scholar]
  7. Barry B. A., Babcock G. T. Tyrosine radicals are involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7099–7103. doi: 10.1073/pnas.84.20.7099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Barry B. A. Tyrosyl radicals in photosystem II. Methods Enzymol. 1995;258:303–319. doi: 10.1016/0076-6879(95)58053-0. [DOI] [PubMed] [Google Scholar]
  9. Barry B., Mathies R. A. Raman microscope studies on the primary photochemistry of vertebrate visual pigments with absorption maxima from 430 to 502 nm. Biochemistry. 1987 Jan 13;26(1):59–64. doi: 10.1021/bi00375a009. [DOI] [PubMed] [Google Scholar]
  10. Bernard M. T., MacDonald G. M., Nguyen A. P., Debus R. J., Barry B. A. A difference infrared study of hydrogen bonding to the Z. tyrosyl radical of photosystem II. J Biol Chem. 1995 Jan 27;270(4):1589–1594. doi: 10.1074/jbc.270.4.1589. [DOI] [PubMed] [Google Scholar]
  11. Boerner R. J., Barry B. A. EPR evidence that the M+ radical, which is observed in three site-directed mutants of photosystem II, is a tyrosine radical. J Biol Chem. 1994 Jan 7;269(1):134–137. [PubMed] [Google Scholar]
  12. Boerner R. J., Barry B. A. Isotopic labeling and EPR spectroscopy show that a tyrosine residue is the terminal electron donor, Z, in manganese-depleted photosystem II preparations. J Biol Chem. 1993 Aug 15;268(23):17151–17154. [PubMed] [Google Scholar]
  13. Boerner R. J., Bixby K. A., Nguyen A. P., Noren G. H., Debus R. J., Barry B. A. Removal of stable tyrosine radical D+ affects the structure or redox properties of tyrosine Z in manganese-depleted photosystem II particles from Synechocystis 6803. J Biol Chem. 1993 Jan 25;268(3):1817–1823. [PubMed] [Google Scholar]
  14. Boerner R. J., Nguyen A. P., Barry B. A., Debus R. J. Evidence from directed mutagenesis that aspartate 170 of the D1 polypeptide influences the assembly and/or stability of the manganese cluster in the photosynthetic water-splitting complex. Biochemistry. 1992 Jul 28;31(29):6660–6672. doi: 10.1021/bi00144a005. [DOI] [PubMed] [Google Scholar]
  15. Braiman M. S., Rothschild K. J. Fourier transform infrared techniques for probing membrane protein structure. Annu Rev Biophys Biophys Chem. 1988;17:541–570. doi: 10.1146/annurev.bb.17.060188.002545. [DOI] [PubMed] [Google Scholar]
  16. Buser C. A., Thompson L. K., Diner B. A., Brudvig G. W. Electron-transfer reactions in manganese-depleted photosystem II. Biochemistry. 1990 Sep 25;29(38):8977–8985. doi: 10.1021/bi00490a014. [DOI] [PubMed] [Google Scholar]
  17. Debus R. J., Barry B. A., Babcock G. T., McIntosh L. Site-directed mutagenesis identifies a tyrosine radical involved in the photosynthetic oxygen-evolving system. Proc Natl Acad Sci U S A. 1988 Jan;85(2):427–430. doi: 10.1073/pnas.85.2.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Debus R. J., Barry B. A., Sithole I., Babcock G. T., McIntosh L. Directed mutagenesis indicates that the donor to P+680 in photosystem II is tyrosine-161 of the D1 polypeptide. Biochemistry. 1988 Dec 27;27(26):9071–9074. doi: 10.1021/bi00426a001. [DOI] [PubMed] [Google Scholar]
  19. Dollinger G., Eisenstein L., Lin S. L., Nakanishi K., Termini J. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine. Biochemistry. 1986 Oct 21;25(21):6524–6533. doi: 10.1021/bi00369a028. [DOI] [PubMed] [Google Scholar]
  20. Fitzgerald M. M., Musah R. A., McRee D. E., Goodin D. B. A ligand-gated, hinged loop rearrangement opens a channel to a buried artificial protein cavity. Nat Struct Biol. 1996 Jul;3(7):626–631. doi: 10.1038/nsb0796-626. [DOI] [PubMed] [Google Scholar]
  21. Hienerwadel R., Boussac A., Breton J., Berthomieu C. Fourier transform infrared difference study of tyrosineD oxidation and plastoquinone QA reduction in photosystem II. Biochemistry. 1996 Dec 3;35(48):15447–15460. doi: 10.1021/bi961952d. [DOI] [PubMed] [Google Scholar]
  22. Hienerwadel R., Boussac A., Breton J., Diner B. A., Berthomieu C. Fourier transform infrared difference spectroscopy of photosystem II tyrosine D using site-directed mutagenesis and specific isotope labeling. Biochemistry. 1997 Dec 2;36(48):14712–14723. doi: 10.1021/bi971521a. [DOI] [PubMed] [Google Scholar]
  23. Hoganson C. W., Babcock G. T. A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science. 1997 Sep 26;277(5334):1953–1956. doi: 10.1126/science.277.5334.1953. [DOI] [PubMed] [Google Scholar]
  24. Kim S., Liang J., Barry B. A. Chemical complementation identifies a proton acceptor for redox-active tyrosine D in photosystem II. Proc Natl Acad Sci U S A. 1997 Dec 23;94(26):14406–14411. doi: 10.1073/pnas.94.26.14406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ma C., Barry B. A. Electron paramagnetic resonance characterization of tyrosine radical, M+, in site-directed mutants of photosystem II(t). Biophys J. 1996 Oct;71(4):1961–1972. doi: 10.1016/S0006-3495(96)79394-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. MacDonald G. M., Barry B. A. Difference FT-IR study of a novel biochemical preparation of photosystem II. Biochemistry. 1992 Oct 13;31(40):9848–9856. doi: 10.1021/bi00155a043. [DOI] [PubMed] [Google Scholar]
  27. MacDonald G. M., Bixby K. A., Barry B. A. A difference Fourier-transform infrared study of two redox-active tyrosine residues in photosystem II. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11024–11028. doi: 10.1073/pnas.90.23.11024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. MacDonald G. M., Steenhuis J. J., Barry B. A. A difference Fourier transform infrared spectroscopic study of chlorophyll oxidation in hydroxylamine-treated photosystem II. J Biol Chem. 1995 Apr 14;270(15):8420–8428. doi: 10.1074/jbc.270.15.8420. [DOI] [PubMed] [Google Scholar]
  29. Metz J. G., Nixon P. J., Rögner M., Brudvig G. W., Diner B. A. Directed alteration of the D1 polypeptide of photosystem II: evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry. 1989 Aug 22;28(17):6960–6969. doi: 10.1021/bi00443a028. [DOI] [PubMed] [Google Scholar]
  30. Miller A. F., Brudvig G. W. A guide to electron paramagnetic resonance spectroscopy of Photosystem II membranes. Biochim Biophys Acta. 1991 Jan 3;1056(1):1–18. doi: 10.1016/s0005-2728(05)80067-2. [DOI] [PubMed] [Google Scholar]
  31. Musah R. A., Goodin D. B. Introduction of novel substrate oxidation into cytochrome c peroxidase by cavity complementation: oxidation of 2-aminothiazole and covalent modification of the enzyme. Biochemistry. 1997 Sep 30;36(39):11665–11674. doi: 10.1021/bi9708038. [DOI] [PubMed] [Google Scholar]
  32. Nanba O., Satoh K. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc Natl Acad Sci U S A. 1987 Jan;84(1):109–112. doi: 10.1073/pnas.84.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Noren G. H., Barry B. A. The YF161D1 mutant of Synechocystis 6803 exhibits an EPR signal from a light-induced photosystem II radical. Biochemistry. 1992 Apr 7;31(13):3335–3342. doi: 10.1021/bi00128a005. [DOI] [PubMed] [Google Scholar]
  34. Noren G. H., Boerner R. J., Barry B. A. EPR characterization of an oxygen-evolving photosystem II preparation from the transformable cyanobacterium Synechocystis 6803. Biochemistry. 1991 Apr 23;30(16):3943–3950. doi: 10.1021/bi00230a020. [DOI] [PubMed] [Google Scholar]
  35. Patzlaff J. S., Barry B. A. Pigment quantitation and analysis by HPLC reverse phase chromatography: a characterization of antenna size in oxygen-evolving photosystem II preparations from cyanobacteria and plants. Biochemistry. 1996 Jun 18;35(24):7802–7811. doi: 10.1021/bi960056z. [DOI] [PubMed] [Google Scholar]
  36. Rath P., Bovee-Geurts P. H., DeGrip W. J., Rothschild K. J. Photoactivation of rhodopsin involves alterations in cysteine side chains: detection of an S-H band in the Meta I-->Meta II FTIR difference spectrum. Biophys J. 1994 Jun;66(6):2085–2091. doi: 10.1016/S0006-3495(94)81003-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Svensson B., Vass I., Cedergren E., Styring S. Structure of donor side components in photosystem II predicted by computer modelling. EMBO J. 1990 Jul;9(7):2051–2059. doi: 10.1002/j.1460-2075.1990.tb07372.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tang X. S., Chisholm D. A., Dismukes G. C., Brudvig G. W., Diner B. A. Spectroscopic evidence from site-directed mutants of Synechocystis PCC6803 in favor of a close interaction between histidine 189 and redox-active tyrosine 160, both of polypeptide D2 of the photosystem II reaction center. Biochemistry. 1993 Dec 14;32(49):13742–13748. doi: 10.1021/bi00212a045. [DOI] [PubMed] [Google Scholar]
  39. Tang X. S., Zheng M., Chisholm D. A., Dismukes G. C., Diner B. A. Investigation of the differences in the local protein environments surrounding tyrosine radicals YZ. and YD. in photosystem II using wild-type and the D2-Tyr160Phe mutant of Synechocystis 6803. Biochemistry. 1996 Feb 6;35(5):1475–1484. doi: 10.1021/bi951489p. [DOI] [PubMed] [Google Scholar]
  40. Tiede D. M., Vázquez J., Córdova J., Marone P. A. Time-resolved electrochromism associated with the formation of quinone anions in the Rhodobacter sphaeroides R26 reaction center. Biochemistry. 1996 Aug 20;35(33):10763–10775. doi: 10.1021/bi9605907. [DOI] [PubMed] [Google Scholar]
  41. Tommos C., Davidsson L., Svensson B., Madsen C., Vermaas W., Styring S. Modified EPR spectra of the tyrosineD radical in photosystem II in site-directed mutants of Synechocystis sp. PCC 6803: identification of side chains in the immediate vicinity of tyrosineD on the D2 protein. Biochemistry. 1993 May 25;32(20):5436–5441. doi: 10.1021/bi00071a020. [DOI] [PubMed] [Google Scholar]
  42. Un S., Tang X. S., Diner B. A. 245 GHz high-field EPR study of tyrosine-D zero and tyrosine-Z zero in mutants of photosystem II. Biochemistry. 1996 Jan 23;35(3):679–684. doi: 10.1021/bi9523769. [DOI] [PubMed] [Google Scholar]
  43. Vass I., Styring S. pH-dependent charge equilibria between tyrosine-D and the S states in photosystem II. Estimation of relative midpoint redox potentials. Biochemistry. 1991 Jan 22;30(3):830–839. doi: 10.1021/bi00217a037. [DOI] [PubMed] [Google Scholar]
  44. Vermass W. F., Rutherford A. W., Hansson O. Site-directed mutagenesis in photosystem II of the cyanobacterium Synechocystis sp. PCC 6803: Donor D is a tyrosine residue in the D2 protein. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8477–8481. doi: 10.1073/pnas.85.22.8477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Warden J. T., Blankenship R. E., Sauer K. A flash photolysis ESR study of photosystem II signal IIvf, the physiological donor to P-680+. Biochim Biophys Acta. 1976 Mar 12;423(3):462–478. doi: 10.1016/0005-2728(76)90201-2. [DOI] [PubMed] [Google Scholar]
  46. Zhang H., Razeghifard M. R., Fischer G., Wydrzynski T. A time-resolved FTIR difference study of the plastoquinone QA and redox-active tyrosine YZ interactions in photosystem II. Biochemistry. 1997 Sep 30;36(39):11762–11768. doi: 10.1021/bi970815t. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES