Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2611–2622. doi: 10.1016/S0006-3495(98)77967-6

Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus.

L O Pålsson 1, C Flemming 1, B Gobets 1, R van Grondelle 1, J P Dekker 1, E Schlodder 1
PMCID: PMC1299601  PMID: 9591685

Abstract

Photosystem I of the cyanobacterium Synechococcus elongatus contains two spectral pools of chlorophylls called C-708 and C-719 that absorb at longer wavelengths than the primary electron donor P700. We investigated the relative quantum yields of photochemical charge separation and fluorescence as a function of excitation wavelength and temperature in trimeric and monomeric photosystem I complexes of this cyanobacterium. The monomeric complexes are characterized by a reduced content of the C-719 spectral form. At room temperature, an analysis of the wavelength dependence of P700 oxidation indicated that all absorbed light, even of wavelengths of up to 750 nm, has the same probability of resulting in a stable P700 photooxidation. Upon cooling from 295 K to 5 K, the nonselectively excited steady-state emission increased by 11- and 16-fold in the trimeric and monomeric complexes, respectively, whereas the quantum yield of P700 oxidation decreased 2.2- and 1.7-fold. Fluorescence excitation spectra at 5 K indicate that the fluorescence quantum yield further increases upon scanning of the excitation wavelength from 690 nm to 710 nm, whereas the quantum yield of P700 oxidation decreases significantly upon excitation at wavelengths longer than 700 nm. Based on these findings, we conclude that at 5 K the excited state is not equilibrated over the antenna before charge separation occurs, and that approximately 50% of the excitations reach P700 before they become irreversibly trapped on one of the long-wavelength antenna pigments. Possible spatial organizations of the long-wavelength antenna pigments in the three-dimensional structure of photosystem I are discussed.

Full Text

The Full Text of this article is available as a PDF (152.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chiou H. C., Lin S., Blankenship R. E. Time-resolved spectroscopy of energy transfer and trapping upon selective excitation in membranes of Heliobacillus mobilis at low temperature. J Phys Chem B. 1997 May 15;101(20):4136–4141. doi: 10.1021/jp963384h. [DOI] [PubMed] [Google Scholar]
  2. Chitnis V. P., Chitnis P. R. PsaL subunit is required for the formation of photosystem I trimers in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 1993 Dec 27;336(2):330–334. doi: 10.1016/0014-5793(93)80831-e. [DOI] [PubMed] [Google Scholar]
  3. Croce R., Zucchelli G., Garlaschi F. M., Bassi R., Jennings R. C. Excited state equilibration in the photosystem I-light-harvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry. 1996 Jul 2;35(26):8572–8579. doi: 10.1021/bi960214m. [DOI] [PubMed] [Google Scholar]
  4. Fromme P. Structure and function of photosystem I. Curr Opin Struct Biol. 1996 Aug;6(4):473–484. doi: 10.1016/s0959-440x(96)80112-6. [DOI] [PubMed] [Google Scholar]
  5. Hastings G., Hoshina S., Webber A. N., Blankenship R. E. Universality of energy and electron transfer processes in photosystem I. Biochemistry. 1995 Nov 28;34(47):15512–15522. doi: 10.1021/bi00047a017. [DOI] [PubMed] [Google Scholar]
  6. Hastings G., Kleinherenbrink F. A., Lin S., Blankenship R. E. Time-resolved fluorescence and absorption spectroscopy of photosystem I. Biochemistry. 1994 Mar 22;33(11):3185–3192. doi: 10.1021/bi00177a007. [DOI] [PubMed] [Google Scholar]
  7. Hastings G., Reed L. J., Lin S., Blankenship R. E. Excited state dynamics in photosystem I: effects of detergent and excitation wavelength. Biophys J. 1995 Nov;69(5):2044–2055. doi: 10.1016/S0006-3495(95)80074-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hecks B., Wulf K., Breton J., Leibl W., Trissl H. W. Primary charge separation in photosystem I: a two-step electrogenic charge separation connected with P700+A0- and P700+A1- formation. Biochemistry. 1994 Jul 26;33(29):8619–8624. doi: 10.1021/bi00195a001. [DOI] [PubMed] [Google Scholar]
  9. Holzwarth A. R., Schatz G., Brock H., Bittersmann E. Energy transfer and charge separation kinetics in photosystem I: Part 1: Picosecond transient absorption and fluorescence study of cyanobacterial photosystem I particles. Biophys J. 1993 Jun;64(6):1813–1826. doi: 10.1016/S0006-3495(93)81552-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Krauss N., Schubert W. D., Klukas O., Fromme P., Witt H. T., Saenger W. Photosystem I at 4 A resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol. 1996 Nov;3(11):965–973. doi: 10.1038/nsb1196-965. [DOI] [PubMed] [Google Scholar]
  11. Liebl U., Lambry J. C., Breton J., Martin J. L., Vos M. H. Spectral equilibration and primary photochemistry in Heliobacillus mobilis at cryogenic temperature. Biochemistry. 1997 May 13;36(19):5912–5920. doi: 10.1021/bi9625197. [DOI] [PubMed] [Google Scholar]
  12. Lüneberg J., Fromme P., Jekow P., Schlodder E. Spectroscopic characterization of PS I core complexes from thermophilic Synechococcus sp. Identical reoxidation kinetics of A1- before and after removal of the iron-sulfur-clusters FA and FB. FEBS Lett. 1994 Jan 31;338(2):197–202. doi: 10.1016/0014-5793(94)80364-1. [DOI] [PubMed] [Google Scholar]
  13. Mühlenhoff U., Chauvat F. Gene transfer and manipulation in the thermophilic cyanobacterium Synechococcus elongatus. Mol Gen Genet. 1996 Aug 27;252(1-2):93–100. doi: 10.1007/BF02173209. [DOI] [PubMed] [Google Scholar]
  14. Owens T. G., Webb S. P., Mets L., Alberte R. S., Fleming G. R. Antenna size dependence of fluorescence decay in the core antenna of photosystem I: estimates of charge separation and energy transfer rates. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1532–1536. doi: 10.1073/pnas.84.6.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schmid V. H., Cammarata K. V., Bruns B. U., Schmidt G. W. In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci U S A. 1997 Jul 8;94(14):7667–7672. doi: 10.1073/pnas.94.14.7667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schubert W. D., Klukas O., Krauss N., Saenger W., Fromme P., Witt H. T. Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. J Mol Biol. 1997 Oct 10;272(5):741–769. doi: 10.1006/jmbi.1997.1269. [DOI] [PubMed] [Google Scholar]
  17. Trinkunas G., Holzwarth A. R. Kinetic modeling of exciton migration in photosynthetic systems. 2. Simulations of excitation dynamics in two-dimensional photosystem I core antenna/reaction center complexes. Biophys J. 1994 Feb;66(2 Pt 1):415–429. doi: 10.1016/s0006-3495(94)80792-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Trinkunas G., Holzwarth A. R. Kinetic modeling of exciton migration in photosynthetic systems. 3. Application of genetic algorithms to simulations of excitation dynamics in three-dimensional photosystem I core antenna/reaction center complexes. Biophys J. 1996 Jul;71(1):351–364. doi: 10.1016/S0006-3495(96)79233-0. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES