Abstract
When the oxygen binding isotherms of human, bovine and fallow deer (Dama-Dama) hemoglobins are measured at different temperatures either by optical or calorimetric techniques, analyses according to the Adair's formalism show that at least one of the intermediate steps of ligation has a positive enthalpy change, i.e., absorbs rather than emitting heat, indicating that it is entropy rather than enthalpy driven (Bucci, E., et al. 1991. Biochemistry. 30:3195-3199; Bucci, E., et al. 1993. Biochemistry. 32:3519-3526; Johnson, C., et al. 1992. Biochemistry. 31:10074-10082; Johnson, C., et al. 1995. Biophys. Chem. 59:107-117). This phenomenon is confirmed in systems in which the beta82 lysines of human hemoglobin are covalently cross-linked by acylation with dicarboxylic acids of increasing length, namely the fumaryl (four-carbon-long), adipoyl (six-carbon-long), and sebacoyl (10-carbon-long) residues. Consistently in all of the systems here reported, the enthalpy excursions are masked by compensatory entropy changes, which keep the free energy of ligand binding constant for the first three steps of oxygenation. Furthermore, the cooperativity index and the overall oxygen affinity seem to be correlated to the positive enthalpy excursions of the intermediate steps of ligation. Fumaryl-Hb (hemoglobin cross-linked with a fumaryl residue, four carbons) with the lowest absorption of heat has the highest affinity and lowest cooperativity index. Adipoyl-Hb (hemoglobin cross-linked with an adipoyl residue, six carbons) has the highest absorption of heat and the highest cooperativity index. It appears that nonuniform heat release by the intermediates of oxygenation is part of the allosteric phenomena in hemoglobin systems. There is not enough information that would allow assigning these phenomena to the interplay of the various conformations described for hemoglobin besides the classic T (Fermi et al. 1984. J. Mol. Biol. 175:159-174) and R (Shanaan. 1983. J. Mol. Biol. 171:31-59), as listed at the end of the Discussion. The possibility cannot be excluded that entropy-driven steps characterize new conformational transitions still to be described.
Full Text
The Full Text of this article is available as a PDF (119.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackers G. K., Doyle M. L., Myers D., Daugherty M. A. Molecular code for cooperativity in hemoglobin. Science. 1992 Jan 3;255(5040):54–63. doi: 10.1126/science.1553532. [DOI] [PubMed] [Google Scholar]
- Ackers G. K., Smith F. R. The hemoglobin tetramer: a three-state molecular switch for control of ligand affinity. Annu Rev Biophys Biophys Chem. 1987;16:583–609. doi: 10.1146/annurev.bb.16.060187.003055. [DOI] [PubMed] [Google Scholar]
- Atha D. H., Ackers G. K. Calorimetric determination of the heat of oxygenation of human hemolgobin as a function of pH and the extent of reaction. Biochemistry. 1974 May 21;13(11):2376–2383. doi: 10.1021/bi00708a022. [DOI] [PubMed] [Google Scholar]
- Brunori M., Giardina B., Binotti I., Antonini E. The hemoglobin system of trout: equilibria and kinetics of ligand binding by isolated components. Acta Vitaminol Enzymol. 1973;27(1):29–36. [PubMed] [Google Scholar]
- Bucci E., Fronticelli C., Gryczynski Z. Discontinuous release of heat at successive steps of oxygenation in human and bovine hemoglobin at pH 9.0. Biochemistry. 1991 Apr 2;30(13):3195–3199. doi: 10.1021/bi00227a006. [DOI] [PubMed] [Google Scholar]
- Bucci E., Fronticelli C., Gryczynski Z., Razynska A., Collins J. H. Effect of intramolecular cross-links on the enthalpy and quaternary structure of the intermediates of oxygenation of human hemoglobin. Biochemistry. 1993 Apr 13;32(14):3519–3526. doi: 10.1021/bi00065a001. [DOI] [PubMed] [Google Scholar]
- Bucci E., Malak H., Fronticelli C., Gryczynski I., Lakowicz J. R. Resolution of the lifetimes and correlation times of the intrinsic tryptophan fluorescence of human hemoglobin solutions using 2 GHz frequency-domain fluorometry. J Biol Chem. 1988 May 25;263(15):6972–6977. [PubMed] [Google Scholar]
- Bucci E., Razynska A., Kwansa H., Gryczynski Z., Collins J. H., Fronticelli C., Unger R., Braxenthaler M., Moult J., Ji X. Positive and negative cooperativities at subsequent steps of oxygenation regulate the allosteric behavior of multistate sebacylhemoglobin. Biochemistry. 1996 Mar 19;35(11):3418–3425. doi: 10.1021/bi952446b. [DOI] [PubMed] [Google Scholar]
- Colombo M. F., Rau D. C., Parsegian V. A. Protein solvation in allosteric regulation: a water effect on hemoglobin. Science. 1992 May 1;256(5057):655–659. doi: 10.1126/science.1585178. [DOI] [PubMed] [Google Scholar]
- Colombo M. F., Rau D. C., Parsegian V. A. Reevaluation of chloride's regulation of hemoglobin oxygen uptake: the neglected contribution of protein hydration in allosterism. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10517–10520. doi: 10.1073/pnas.91.22.10517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dolman D., Gill S. J. Membrane-covered thin-layer optical cell for gas-reaction studies of hemoglobin. Anal Biochem. 1978 Jun 15;87(1):127–134. doi: 10.1016/0003-2697(78)90576-6. [DOI] [PubMed] [Google Scholar]
- Fermi G., Perutz M. F., Shaanan B., Fourme R. The crystal structure of human deoxyhaemoglobin at 1.74 A resolution. J Mol Biol. 1984 May 15;175(2):159–174. doi: 10.1016/0022-2836(84)90472-8. [DOI] [PubMed] [Google Scholar]
- Forbes W. H., Roughton F. J. The equilibrium between oxygen and haemoglobin: I. The oxygen dissociation curve of dilute blood solutions. J Physiol. 1931 Mar 23;71(3):229–260. doi: 10.1113/jphysiol.1931.sp002729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gill S. J., Di Cera E., Doyle M. L., Bishop G. A., Robert C. H. Oxygen binding constants for human hemoglobin tetramers. Biochemistry. 1987 Jun 30;26(13):3995–4002. doi: 10.1021/bi00387a038. [DOI] [PubMed] [Google Scholar]
- Gryczynski Z., Beretta S., Lubkowski J., Razynska A., Gryczynski I., Bucci E. Time-resolved fluorescence of hemoglobin species. Biophys Chem. 1997 Feb 28;64(1-3):81–91. doi: 10.1016/s0301-4622(96)02224-7. [DOI] [PubMed] [Google Scholar]
- Huang Y., Ackers G. K. Enthalpic and entropic components of cooperativity for the partially ligated intermediates of hemoglobin support a "symmetry rule" mechanism. Biochemistry. 1995 May 16;34(19):6316–6327. doi: 10.1021/bi00019a009. [DOI] [PubMed] [Google Scholar]
- Huang Y., Doyle M. L., Ackers G. K. The oxygen-binding intermediates of human hemoglobin: evaluation of their contributions to cooperativity using zinc-containing hybrids. Biophys J. 1996 Oct;71(4):2094–2105. doi: 10.1016/S0006-3495(96)79408-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imai K., Morimoto H., Kotani M., Watari H., Hirata W. Studies on the function of abnormal hemoglobins. I. An improved method for automatic measurement of the oxygen equilibrium curve of hemoglobin. Biochim Biophys Acta. 1970 Feb 17;200(2):189–196. doi: 10.1016/0005-2795(70)90163-7. [DOI] [PubMed] [Google Scholar]
- Imai K. Precision determination and Adair scheme analysis of oxygen equilibrium curves of concentrated hemoglobin solution. A strict examination of Adair constant evaluation methods. Biophys Chem. 1990 Aug 31;37(1-3):197–210. doi: 10.1016/0301-4622(90)88019-o. [DOI] [PubMed] [Google Scholar]
- Imai K. Thermodynamic aspects of the co-operativity in four-step oxygenation equilibria of haemoglobin. J Mol Biol. 1979 Sep 15;133(2):233–247. doi: 10.1016/0022-2836(79)90532-1. [DOI] [PubMed] [Google Scholar]
- Jayaraman V., Spiro T. G. Structure of a third cooperativity state of hemoglobin: ultraviolet resonance Raman spectroscopy of cyanomethemoglobin ligation microstates. Biochemistry. 1995 Apr 11;34(14):4511–4515. doi: 10.1021/bi00014a002. [DOI] [PubMed] [Google Scholar]
- Johnson C. R., Angeletti M., Pucciarelli S., Freire E. Oxygen binding to fallow-deer (Dama dama) hemoglobin: stepwise enthalpies at pH 7.4. Biophys Chem. 1996 Mar 7;59(1-2):107–117. doi: 10.1016/0301-4622(95)00140-9. [DOI] [PubMed] [Google Scholar]
- Johnson C. R., Ownby D. W., Gill S. J., Peters K. S. Oxygen binding constants and stepwise enthalpies for human and bovine hemoglobin at pH 7.6. Biochemistry. 1992 Oct 20;31(41):10074–10082. doi: 10.1021/bi00156a030. [DOI] [PubMed] [Google Scholar]
- Koshland D. E., Jr, Némethy G., Filmer D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry. 1966 Jan;5(1):365–385. doi: 10.1021/bi00865a047. [DOI] [PubMed] [Google Scholar]
- Liddington R., Derewenda Z., Dodson E., Hubbard R., Dodson G. High resolution crystal structures and comparisons of T-state deoxyhaemoglobin and two liganded T-state haemoglobins: T(alpha-oxy)haemoglobin and T(met)haemoglobin. J Mol Biol. 1992 Nov 20;228(2):551–579. doi: 10.1016/0022-2836(92)90842-8. [DOI] [PubMed] [Google Scholar]
- Liddington R., Derewenda Z., Dodson G., Harris D. Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding. Nature. 1988 Feb 25;331(6158):725–728. doi: 10.1038/331725a0. [DOI] [PubMed] [Google Scholar]
- MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
- Marden M. C., Kister J., Poyart C., Edelstein S. J. Analysis of hemoglobin oxygen equilibrium curves. Are unique solutions possible? J Mol Biol. 1989 Jul 20;208(2):341–345. doi: 10.1016/0022-2836(89)90393-8. [DOI] [PubMed] [Google Scholar]
- Mills F. C., Ackers G. K., Gaud H. T., Gill S. J. Thermodynamic studies on ligand binding and subunit association of human hemoglobins. Enthalpies of binding O2 and CO to subunit chains of hemoglobin A. J Biol Chem. 1979 Apr 25;254(8):2875–2880. [PubMed] [Google Scholar]
- Pin S., Royer C. A., Gratton E., Alpert B., Weber G. Subunit interactions in hemoglobin probed by fluorescence and high-pressure techniques. Biochemistry. 1990 Oct 2;29(39):9194–9202. doi: 10.1021/bi00491a013. [DOI] [PubMed] [Google Scholar]
- Schumacher M. A., Dixon M. M., Kluger R., Jones R. T., Brennan R. G. Allosteric transition intermediates modelled by crosslinked haemoglobins. Nature. 1995 May 4;375(6526):84–87. doi: 10.1038/375084a0. [DOI] [PubMed] [Google Scholar]
- Schumacher M. A., Zheleznova E. E., Poundstone K. S., Kluger R., Jones R. T., Brennan R. G. Allosteric intermediates indicate R2 is the liganded hemoglobin end state. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7841–7844. doi: 10.1073/pnas.94.15.7841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaanan B. Structure of human oxyhaemoglobin at 2.1 A resolution. J Mol Biol. 1983 Nov 25;171(1):31–59. doi: 10.1016/s0022-2836(83)80313-1. [DOI] [PubMed] [Google Scholar]
- Silva M. M., Rogers P. H., Arnone A. A third quaternary structure of human hemoglobin A at 1.7-A resolution. J Biol Chem. 1992 Aug 25;267(24):17248–17256. [PubMed] [Google Scholar]
- Wilson J., Phillips K., Luisi B. The crystal structure of horse deoxyhaemoglobin trapped in the high-affinity (R) state. J Mol Biol. 1996 Dec 13;264(4):743–756. doi: 10.1006/jmbi.1996.0674. [DOI] [PubMed] [Google Scholar]