Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2649–2657. doi: 10.1016/S0006-3495(98)77970-6

Characterization of the growth of 2D protein crystals on a lipid monolayer by ellipsometry and rigidity measurements coupled to electron microscopy.

C Vénien-Bryan 1, P F Lenne 1, C Zakri 1, A Renault 1, A Brisson 1, J F Legrand 1, B Berge 1
PMCID: PMC1299604  PMID: 9591688

Abstract

We present here some sensitive optical and mechanical experiments for monitoring the process of formation and growth of two-dimensional (2D) crystals of proteins on a lipid monolayer at an air-water interface. The adsorption of proteins on the lipid monolayer was monitored by ellipsometry measurements. An instrument was developed to measure the shear elastic constant (in plane rigidity) of the monolayer. These experiments have been done using cholera toxin B subunit (CTB) and annexin V as model proteins interacting with a monosialoganglioside (GM1) and dioleoylphosphatidylserine (DOPS), respectively. Electron microscopy observations of the protein-lipid layer transferred to grids were systematically used as a control. We found a good correlation between the measured in-plane rigidity of the monolayer and the presence of large crystalline domains observed by electron microscopy grids. Our interpretation of these data is that the crystallization process of proteins on a lipid monolayer passes through at least three successive stages: 1) molecular recognition between protein and lipid-ligand, i.e., adsorption of the protein on the lipid layer; 2) nucleation and growth of crystalline patches whose percolation is detected by the appearance of a non-zero in-plane rigidity; and 3) annealing of the layer producing a slower increase of the lateral or in-plane rigidity.

Full Text

The Full Text of this article is available as a PDF (400.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andree H. A., Reutelingsperger C. P., Hauptmann R., Hemker H. C., Hermens W. T., Willems G. M. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem. 1990 Mar 25;265(9):4923–4928. [PubMed] [Google Scholar]
  2. Avila-Sakar A. J., Chiu W. Visualization of beta-sheets and side-chain clusters in two-dimensional periodic arrays of streptavidin on phospholipid monolayers by electron crystallography. Biophys J. 1996 Jan;70(1):57–68. doi: 10.1016/S0006-3495(96)79597-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barklis E., McDermott J., Wilkens S., Schabtach E., Schmid M. F., Fuller S., Karanjia S., Love Z., Jones R., Rui Y. Structural analysis of membrane-bound retrovirus capsid proteins. EMBO J. 1997 Mar 17;16(6):1199–1213. doi: 10.1093/emboj/16.6.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brisson A., Olofsson A., Ringler P., Schmutz M., Stoylova S. Two-dimensional crystallization of proteins on planar lipid films and structure determination by electron crystallography. Biol Cell. 1994;80(2-3):221–228. [PubMed] [Google Scholar]
  5. Celia H., Hoermann L., Schultz P., Lebeau L., Mallouh V., Wigley D. B., Wang J. C., Mioskowski C., Oudet P. Three-dimensional model of Escherichia coli gyrase B subunit crystallized in two-dimensions on novobiocin-linked phospholipid films. J Mol Biol. 1994 Feb 18;236(2):618–628. doi: 10.1006/jmbi.1994.1171. [DOI] [PubMed] [Google Scholar]
  6. Darst S. A., Kubalek E. W., Kornberg R. D. Three-dimensional structure of Escherichia coli RNA polymerase holoenzyme determined by electron crystallography. Nature. 1989 Aug 31;340(6236):730–732. doi: 10.1038/340730a0. [DOI] [PubMed] [Google Scholar]
  7. Edwards A. M., Darst S. A., Hemming S. A., Li Y., Kornberg R. D. Epitaxial growth of protein crystals on lipid layers. Nat Struct Biol. 1994 Mar;1(3):195–197. doi: 10.1038/nsb0394-195. [DOI] [PubMed] [Google Scholar]
  8. Frey W., Schief W. R., Jr, Pack D. W., Chen C. T., Chilkoti A., Stayton P., Vogel V., Arnold F. H. Two-dimensional protein crystallization via metal-ion coordination by naturally occurring surface histidines. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4937–4941. doi: 10.1073/pnas.93.10.4937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haas H., Brezesinski G., Möhwald H. X-ray diffraction of a protein crystal anchored at the air/water interface. Biophys J. 1995 Jan;68(1):312–314. doi: 10.1016/S0006-3495(95)80189-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henderson R., Baldwin J. M., Ceska T. A., Zemlin F., Beckmann E., Downing K. H. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol. 1990 Jun 20;213(4):899–929. doi: 10.1016/S0022-2836(05)80271-2. [DOI] [PubMed] [Google Scholar]
  11. Kubalek E. W., Le Grice S. F., Brown P. O. Two-dimensional crystallization of histidine-tagged, HIV-1 reverse transcriptase promoted by a novel nickel-chelating lipid. J Struct Biol. 1994 Sep-Oct;113(2):117–123. doi: 10.1006/jsbi.1994.1039. [DOI] [PubMed] [Google Scholar]
  12. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  13. Merritt E. A., Sarfaty S., van den Akker F., L'Hoir C., Martial J. A., Hol W. G. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 1994 Feb;3(2):166–175. doi: 10.1002/pro.5560030202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mosser G., Mallouh V., Brisson A. A 9 A two-dimensional projected structure of cholera toxin B-subunit-GM1 complexes determined by electron crystallography. J Mol Biol. 1992 Jul 5;226(1):23–28. doi: 10.1016/0022-2836(92)90120-9. [DOI] [PubMed] [Google Scholar]
  15. Olofsson A., Mallouh V., Brisson A. Two-dimensional structure of membrane-bound annexin V at 8 A resolution. J Struct Biol. 1994 Nov-Dec;113(3):199–205. doi: 10.1006/jsbi.1994.1054. [DOI] [PubMed] [Google Scholar]
  16. Ribi H. O., Ludwig D. S., Mercer K. L., Schoolnik G. K., Kornberg R. D. Three-dimensional structure of cholera toxin penetrating a lipid membrane. Science. 1988 Mar 11;239(4845):1272–1276. doi: 10.1126/science.3344432. [DOI] [PubMed] [Google Scholar]
  17. Schultz P., Célia H., Riva M., Darst S. A., Colin P., Kornberg R. D., Sentenac A., Oudet P. Structural study of the yeast RNA polymerase A. Electron microscopy of lipid-bound molecules and two-dimensional crystals. J Mol Biol. 1990 Nov 20;216(2):353–362. doi: 10.1016/S0022-2836(05)80326-2. [DOI] [PubMed] [Google Scholar]
  18. Uzgiris E. E., Kornberg R. D. Two-dimensional crystallization technique for imaging macromolecules, with application to antigen--antibody--complement complexes. Nature. 1983 Jan 13;301(5896):125–129. doi: 10.1038/301125a0. [DOI] [PubMed] [Google Scholar]
  19. Vénien-Bryan C., Balavoine F., Toussaint B., Mioskowski C., Hewat E. A., Helme B., Vignais P. M. Structural study of the response regulator HupR from Rhodobacter capsulatus. Electron microscopy of two-dimensional crystals on a nickel-chelating lipid. J Mol Biol. 1997 Dec 19;274(5):687–692. doi: 10.1006/jmbi.1997.1431. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES