Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2666–2673. doi: 10.1016/S0006-3495(98)77972-X

Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis.

I Baskakov 1, A Wang 1, D W Bolen 1
PMCID: PMC1299606  PMID: 9591690

Abstract

Trimethylamine-N-oxide (TMAO) in the cells of sharks and rays is believed to counteract the deleterious effects of the high intracellular concentrations of urea in these animals. It has been hypothesized that TMAO has the generic ability to counteract the effects of urea on protein structure and function, regardless of whether that protein actually evolved in the presence of these two solutes. Rabbit muscle lactate dehydrogenase (LDH) did not evolve in the presence of either solute, and it is used here to test the validity of the counteraction hypothesis. With pyruvate as substrate, results show that its Km and the combined Km of pyruvate and NADH are increased by urea, decreased by TMAO, and in 1:1 and 2:1 mixtures of urea:TMAO the Km values are essentially equivalent to the Km values obtained in the absence of the two solutes. In contrast, values of k(cat) and the Km for NADH as a substrate are unperturbed by urea, TMAO, or urea:TMAO mixtures. All of these effects are consistent with TMAO counteraction of the effects of urea on LDH kinetic parameters, supporting the premise that counteraction is a property of the solvent system and is independent of the evolutionary history of the protein.

Full Text

The Full Text of this article is available as a PDF (83.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Timasheff S. N. Preferential interactions of proteins with solvent components in aqueous amino acid solutions. Arch Biochem Biophys. 1983 Jul 1;224(1):169–177. doi: 10.1016/0003-9861(83)90201-1. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Timasheff S. N. Stabilization of protein structure by sugars. Biochemistry. 1982 Dec 7;21(25):6536–6544. doi: 10.1021/bi00268a033. [DOI] [PubMed] [Google Scholar]
  3. Arakawa T., Timasheff S. N. The stabilization of proteins by osmolytes. Biophys J. 1985 Mar;47(3):411–414. doi: 10.1016/S0006-3495(85)83932-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bagnasco S., Balaban R., Fales H. M., Yang Y. M., Burg M. Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem. 1986 May 5;261(13):5872–5877. [PubMed] [Google Scholar]
  5. Bolen D. W., Fisher J. R. Kinetic properties of adenosine deaminase in mixed aqueous solvents. Biochemistry. 1969 Nov;8(11):4239–4246. doi: 10.1021/bi00839a003. [DOI] [PubMed] [Google Scholar]
  6. Borowitzka L. J., Brown A. D. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch Mikrobiol. 1974 Mar 1;96(1):37–52. doi: 10.1007/BF00590161. [DOI] [PubMed] [Google Scholar]
  7. Bowlus R. D., Somero G. N. Solute compatibility with enzyme function and structure: rationales for the selection of osmotic agents and end-products of anaerobic metabolism in marine invertebrates. J Exp Zool. 1979 May;208(2):137–151. doi: 10.1002/jez.1402080202. [DOI] [PubMed] [Google Scholar]
  8. Boyd T. A., Cha C. J., Forster R. P., Goldstein L. Free amino acids in tissues of the skate Raja erinacea and the stingray Dasyatis sabina: effects of environmental dilution. J Exp Zool. 1977 Mar;199(3):435–442. doi: 10.1002/jez.1401990318. [DOI] [PubMed] [Google Scholar]
  9. Brown A. D., Simpson J. R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol. 1972 Oct;72(3):589–591. doi: 10.1099/00221287-72-3-589. [DOI] [PubMed] [Google Scholar]
  10. Burg M. B., Peters E. M. Urea and methylamines have similar effects on aldose reductase activity. Am J Physiol. 1997 Dec;273(6 Pt 2):F1048–F1053. doi: 10.1152/ajprenal.1997.273.6.F1048. [DOI] [PubMed] [Google Scholar]
  11. Cho I. C., Swaisgood H. Factors affecting tetramer dissociation of rabbit muscle lactate dehydrogenase and reactivity of its sulfhydryl groups. Biochemistry. 1973 Apr 10;12(8):1572–1577. doi: 10.1021/bi00732a017. [DOI] [PubMed] [Google Scholar]
  12. Everse J., Berger R. L., Kaplan N. O. Physiological concentrations of lactate dehydrogenases and substrate inhibition. Science. 1970 Jun 5;168(3936):1236–1238. doi: 10.1126/science.168.3936.1236. [DOI] [PubMed] [Google Scholar]
  13. FROMM H. DETERMINATION OF DISSOCIATION CONSTANTS OF COENZYMES AND ABORTIVE TERNARY COMPLEXES WITH RABBIT MUSCLE LACTATE DEHYDROGENASE FROM FLUORESCENCE MEASUREMENTS. J Biol Chem. 1963 Sep;238:2938–2944. [PubMed] [Google Scholar]
  14. Fernández-Velasco D. A., Garza-Ramos G., Ramírez L., Shoshani L., Darszon A., Tuena de Gómez-Puyou M., Gómez-Puyou A. Activity of heart and muscle lactate dehydrogenases in all-aqueous systems and in organic solvents with low amounts of water. Effect of guanidine chloride. Eur J Biochem. 1992 Apr 15;205(2):501–508. doi: 10.1111/j.1432-1033.1992.tb16806.x. [DOI] [PubMed] [Google Scholar]
  15. Forster R. P., Goldstein L. Intracellular osmoregulatory role of amino acids and urea in marine elasmobranchs. Am J Physiol. 1976 Apr;230(4):925–931. doi: 10.1152/ajplegacy.1976.230.4.925. [DOI] [PubMed] [Google Scholar]
  16. Garcia-Perez A., Burg M. B. Importance of organic osmolytes for osmoregulation by renal medullary cells. Hypertension. 1990 Dec;16(6):595–602. doi: 10.1161/01.hyp.16.6.595. [DOI] [PubMed] [Google Scholar]
  17. Griffin J. H., Criddle R. S. Substrate-inhibited lactate dehydrogenase. Reaction mechanism and essential role of dissociated subunits. Biochemistry. 1970 Mar 3;9(5):1195–1205. doi: 10.1021/bi00807a021. [DOI] [PubMed] [Google Scholar]
  18. Hagel P., Gerding J. J., Fieggen W., Bloemendal H. Cyanate formation in solutions of urea. I. Calculation of cyanate concentrations at different temperature and pH. Biochim Biophys Acta. 1971 Sep 28;243(3):366–373. doi: 10.1016/0005-2795(71)90003-1. [DOI] [PubMed] [Google Scholar]
  19. Holbrook J. J., Ingram V. A. Ionic properties of an essential histidine residue in pig heart lactate dehydrogenase. Biochem J. 1973 Apr;131(4):729–738. doi: 10.1042/bj1310729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lee J. C., Timasheff S. N. The stabilization of proteins by sucrose. J Biol Chem. 1981 Jul 25;256(14):7193–7201. [PubMed] [Google Scholar]
  21. Lin T. Y., Timasheff S. N. Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine N-oxide interactions with protein. Biochemistry. 1994 Oct 25;33(42):12695–12701. doi: 10.1021/bi00208a021. [DOI] [PubMed] [Google Scholar]
  22. Lushchak V. I., Lushchak L. P. Vliianie mocheviny na aktivnost' laktatdegidrogenazy iz myshts svin'i i skata. Zh Evol Biokhim Fiziol. 1994 Mar-Apr;30(2):185–191. [PubMed] [Google Scholar]
  23. Mashino T., Fridovich I. Effects of urea and trimethylamine-N-oxide on enzyme activity and stability. Arch Biochem Biophys. 1987 Nov 1;258(2):356–360. doi: 10.1016/0003-9861(87)90355-9. [DOI] [PubMed] [Google Scholar]
  24. McQueen M. J. Inhibition and activation of human lactate dehydrogenase by urea. Ann Clin Biochem. 1974 May;11(3):75–80. doi: 10.1177/000456327401100131. [DOI] [PubMed] [Google Scholar]
  25. NOZAKI Y., TANFORD C. THE SOLUBILITY OF AMINO ACIDS AND RELATED COMPOUNDS IN AQUEOUS UREA SOLUTIONS. J Biol Chem. 1963 Dec;238:4074–4081. [PubMed] [Google Scholar]
  26. Nakanishi T., Uyama O., Nakahama H., Takamitsu Y., Sugita M. Determinants of relative amounts of medullary organic osmolytes: effects of NaCl and urea differ. Am J Physiol. 1993 Mar;264(3 Pt 2):F472–F479. doi: 10.1152/ajprenal.1993.264.3.F472. [DOI] [PubMed] [Google Scholar]
  27. Pace C. N. Determination and analysis of urea and guanidine hydrochloride denaturation curves. Methods Enzymol. 1986;131:266–280. doi: 10.1016/0076-6879(86)31045-0. [DOI] [PubMed] [Google Scholar]
  28. RAJAGOPALAN K. V., FRIDOVICH I., HANDLER P. Competitive inhibition of enzyme activity by urea. J Biol Chem. 1961 Apr;236:1059–1065. [PubMed] [Google Scholar]
  29. Santoro M. M., Liu Y., Khan S. M., Hou L. X., Bolen D. W. Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry. 1992 Jun 16;31(23):5278–5283. doi: 10.1021/bi00138a006. [DOI] [PubMed] [Google Scholar]
  30. Stambaugh R., Post D. Substrate and product inhibition of rabbit muscle lactic dehydrogenase heart (H4) and muscle (M4) isozymes. J Biol Chem. 1966 Apr 10;241(7):1462–1467. [PubMed] [Google Scholar]
  31. WIGGERT B. O., VILLEE C. A. MULTIPLE MOLECULAR FORMS OF MALIC AND LACTIC DEHYDROGENASES DURING DEVELOPMENT. J Biol Chem. 1964 Feb;239:444–451. [PubMed] [Google Scholar]
  32. WITHYCOMBE W. A., PLUMMER D. T., WILKINSON J. H. ORGAN SPECIFICITY AND LACTATE-DEHYDROGENASE ACTIVITY. DIFFERENTIAL INHIBITION BY UREA AND RELATED COMPOUNDS. Biochem J. 1965 Feb;94:384–389. doi: 10.1042/bj0940384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wang A., Bolen D. W. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry. 1997 Jul 29;36(30):9101–9108. doi: 10.1021/bi970247h. [DOI] [PubMed] [Google Scholar]
  34. Wang A., Bolen D. W. Effect of proline on lactate dehydrogenase activity: testing the generality and scope of the compatibility paradigm. Biophys J. 1996 Oct;71(4):2117–2122. doi: 10.1016/S0006-3495(96)79410-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wilson T. L. Interrelations between pH and temperature for the catalytic rate of the M4 lsozyme of lactate dehydrogenase (EC 1.1.1.27) from goldfish (Carassius auratus L.). Arch Biochem Biophys. 1977 Mar;179(2):378–390. doi: 10.1016/0003-9861(77)90125-4. [DOI] [PubMed] [Google Scholar]
  36. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]
  37. Yancey P. H., Somero G. N. Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J. 1979 Nov 1;183(2):317–323. doi: 10.1042/bj1830317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. ZEWE V., FROMM H. J. KINETIC STUDIES OF RABBIT MUSCLE LACTATE DEHYDROGENASE. II. MECHANISM OF THE REACTION. Biochemistry. 1965 Apr;4:782–792. doi: 10.1021/bi00880a024. [DOI] [PubMed] [Google Scholar]
  39. ZEWE V., FROMM H. J. Kinetic studies of rabbit muscle lactate dehydrogenase. J Biol Chem. 1962 May;237:1668–1675. [PubMed] [Google Scholar]
  40. de Meis L., Inesi G. Effects of organic solvents, methylamines, and urea on the affinity for Pi of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1988 Jan 5;263(1):157–161. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES