Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2689–2701. doi: 10.1016/S0006-3495(98)77975-5

Separation of polystyrene microbeads using dielectrophoretic/gravitational field-flow-fractionation.

X B Wang 1, J Vykoukal 1, F F Becker 1, P R Gascoyne 1
PMCID: PMC1299609  PMID: 9591693

Abstract

The characterization of a dielectrophoretic/gravitational field-flow-fractionation (DEP/G-FFF) system using model polystyrene (PS) microbeads is presented. Separations of PS beads of different surface functionalization (COOH and none) and different sizes (6, 10, and 15 microm in diameter) are demonstrated. To investigate the factors influencing separation performance, particle elution times were determined as a function of particle suspension conductivity, fluid flow rate, and applied field frequency and voltage. Experimental data were analyzed using a previously reported theoretical model and good agreement between theory and experiment was found. It was shown that separation of PS beads was based on the differences in their effective dielectric properties. Particles possessing different dielectric properties were positioned at different heights in a fluid-flow profile in a thin chamber by the balance of DEP and gravitational forces, transported at different velocities under the influence of the fluid flow, and thereby separated. To explore hydrodynamic (HD) lift effects, velocities of PS beads were determined as a function of fluid flow rate in the separation chamber when no DEP field was applied. In this case, particle equilibrium height positions were governed solely by the balance of HD lift and gravitational forces. It was concluded that under the experimental conditions reported here, the DEP force was the dominant factor in controlling particle equilibrium height and that HD lift force played little role in DEP/G-FFF operation. Finally, the influence of various experimental parameters on separation performance was discussed for the optimization of DEP/G-FFF.

Full Text

The Full Text of this article is available as a PDF (224.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreux J. P., Merino A., Renard M., Forestier F., Cardot P. Separation of red blood cells by field flow fractionation. Exp Hematol. 1993 Feb;21(2):326–330. [PubMed] [Google Scholar]
  2. Becker F. F., Wang X. B., Huang Y., Pethig R., Vykoukal J., Gascoyne P. R. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):860–864. doi: 10.1073/pnas.92.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg H. C., Turner L. Selection of motile nonchemotactic mutants of Escherichia coli by field-flow fractionation. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):8145–8148. doi: 10.1073/pnas.88.18.8145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burt J. P., Pethig R., Gascoyne P. R., Becker F. F. Dielectrophoretic characterisation of Friend murine erythroleukaemic cells as a measure of induced differentiation. Biochim Biophys Acta. 1990 Apr 23;1034(1):93–101. doi: 10.1016/0304-4165(90)90158-s. [DOI] [PubMed] [Google Scholar]
  5. Caldwell K. D., Cheng Z. Q., Hradecky P., Giddings J. C. Separation of human and animal cells by steric field-flow fractionation. Cell Biophys. 1984 Dec;6(4):233–251. doi: 10.1007/BF02788630. [DOI] [PubMed] [Google Scholar]
  6. Caldwell K. D., Gao Y. S. Electrical field-flow fractionation in particle separation. 1. Monodisperse standards. Anal Chem. 1993 Jul 1;65(13):1764–1772. doi: 10.1021/ac00061a021. [DOI] [PubMed] [Google Scholar]
  7. Fuhr G., Arnold W. M., Hagedorn R., Müller T., Benecke W., Wagner B., Zimmermann U. Levitation, holding, and rotation of cells within traps made by high-frequency fields. Biochim Biophys Acta. 1992 Jul 27;1108(2):215–223. doi: 10.1016/0005-2736(92)90028-k. [DOI] [PubMed] [Google Scholar]
  8. Giddings J. C. Field-flow fractionation of macromolecules. J Chromatogr. 1989 May 26;470(2):327–335. doi: 10.1016/s0021-9673(01)83561-5. [DOI] [PubMed] [Google Scholar]
  9. Giddings J. C. Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science. 1993 Jun 4;260(5113):1456–1465. doi: 10.1126/science.8502990. [DOI] [PubMed] [Google Scholar]
  10. Hagedorn R., Fuhr G., Müller T., Gimsa J. Traveling-wave dielectrophoresis of microparticles. Electrophoresis. 1992 Jan-Feb;13(1-2):49–54. doi: 10.1002/elps.1150130110. [DOI] [PubMed] [Google Scholar]
  11. Hsu S. H., Wang B. T., Huang M. H., Wong W. J., Cross J. H. Growth of Japanese encephalitis virus in Culex tritaeniorhynchus cell cultures. Am J Trop Med Hyg. 1975 Sep;24(5):881–888. doi: 10.4269/ajtmh.1975.24.881. [DOI] [PubMed] [Google Scholar]
  12. Huang Y., Wang X. B., Becker F. F., Gascoyne P. R. Introducing dielectrophoresis as a new force field for field-flow fractionation. Biophys J. 1997 Aug;73(2):1118–1129. doi: 10.1016/S0006-3495(97)78144-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liu M. K., Williams P. S., Myers M. N., Giddings J. C. Hydrodynamic relaxation in flow field-flow fractionation using both split and frit inlets. Anal Chem. 1991 Oct 1;63(19):2115–2122. doi: 10.1021/ac00019a010. [DOI] [PubMed] [Google Scholar]
  14. Maier H. Electrorotation of colloidal particles and cells depends on surface charge. Biophys J. 1997 Sep;73(3):1617–1626. doi: 10.1016/S0006-3495(97)78193-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Parsons R., Yue V., Tong X., Cardot P., Bernard A., Andreux J. P., Caldwell K. Comparative study of human red blood cell analysis with three different field-flow fractionation systems. J Chromatogr B Biomed Appl. 1996 Nov 15;686(2):177–187. doi: 10.1016/s0378-4347(96)00186-7. [DOI] [PubMed] [Google Scholar]
  16. Schwan H. P. Linear and nonlinear electrode polarization and biological materials. Ann Biomed Eng. 1992;20(3):269–288. doi: 10.1007/BF02368531. [DOI] [PubMed] [Google Scholar]
  17. Talary M. S., Mills K. I., Hoy T., Burnett A. K., Pethig R. Dielectrophoretic separation and enrichment of CD34+ cell subpopulation from bone marrow and peripheral blood stem cells. Med Biol Eng Comput. 1995 Mar;33(2):235–237. doi: 10.1007/BF02523050. [DOI] [PubMed] [Google Scholar]
  18. Tong X., Ash J. F., Caldwell K. D. Rapid swelling of a CHO-K1 aspartate/glutamate transport mutant in hypo-osmotic medium. J Membr Biol. 1997 Mar 15;156(2):131–139. doi: 10.1007/s002329900195. [DOI] [PubMed] [Google Scholar]
  19. Tong X., Caldwell K. D. Separation and characterization of red blood cells with different membrane deformability using steric field-flow fractionation. J Chromatogr B Biomed Appl. 1995 Dec 1;674(1):39–47. doi: 10.1016/0378-4347(95)00297-0. [DOI] [PubMed] [Google Scholar]
  20. Zhou X. F., Markx G. H., Pethig R., Eastwood I. M. Differentiation of viable and non-viable bacterial biofilms using electrorotation. Biochim Biophys Acta. 1995 Aug 17;1245(1):85–93. doi: 10.1016/0304-4165(95)00072-j. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES