Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 May;74(5):2731–2740. doi: 10.1016/S0006-3495(98)77979-2

Mechanical properties of actin filament networks depend on preparation, polymerization conditions, and storage of actin monomers.

J Xu 1, W H Schwarz 1, J A Käs 1, T P Stossel 1, P A Janmey 1, T D Pollard 1
PMCID: PMC1299613  PMID: 9591697

Abstract

This study investigates possible sources for the variance of more than two orders of magnitude in the published values for the shear moduli of purified actin filaments. Two types of forced oscillatory rheometers used in some of our previous work agree within a factor of three for identical samples. Polymers assembled in EGTA and Mg2+ from fresh, gel-filtered ATP-actin at 1 mg/ml typically have an elastic storage modulus (G') of approximately 1 Pa at a deformation frequency of 0.1-1 Hz. G' is slightly higher when actin is polymerized in KCl with Ca2+ and Mg2+. Gel filtration removes minor contaminants from actin but has little effect on G' for most preparations of actin from acetone powder. Storage of actin monomers without frequent changes of buffer containing fresh ATP and dithiothreitol can result in changes that increase the G' of filaments by more than a factor of 10. Frozen storage can preserve the properties of monomeric actin, but care is necessary to prevent protein denaturation or aggregation due to freezing or thawing.

Full Text

The Full Text of this article is available as a PDF (109.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADELSTEIN R. S., GODFREY J. E., KIELLEY W. W. G-actin:preparation by gel filtration and evidence for a double stranded structure. Biochem Biophys Res Commun. 1963 Jul 10;12:34–38. doi: 10.1016/0006-291x(63)90409-1. [DOI] [PubMed] [Google Scholar]
  2. Allen P. G., Shuster C. B., Käs J., Chaponnier C., Janmey P. A., Herman I. M. Phalloidin binding and rheological differences among actin isoforms. Biochemistry. 1996 Nov 12;35(45):14062–14069. doi: 10.1021/bi961326g. [DOI] [PubMed] [Google Scholar]
  3. Casella J. F., Barron-Casella E. A., Torres M. A. Quantitation of Cap Z in conventional actin preparations and methods for further purification of actin. Cell Motil Cytoskeleton. 1995;30(2):164–170. doi: 10.1002/cm.970300208. [DOI] [PubMed] [Google Scholar]
  4. Drewes G., Faulstich H. A reversible conformational transition in muscle actin is caused by nucleotide exchange and uncovers cysteine in position 10. J Biol Chem. 1991 Mar 25;266(9):5508–5513. [PubMed] [Google Scholar]
  5. Eichinger L., Noegel A. A., Schleicher M. Domain structure in actin-binding proteins: expression and functional characterization of truncated severin. J Cell Biol. 1991 Feb;112(4):665–676. doi: 10.1083/jcb.112.4.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Estes J. E., Selden L. A., Kinosian H. J., Gershman L. C. Tightly-bound divalent cation of actin. J Muscle Res Cell Motil. 1992 Jun;13(3):272–284. doi: 10.1007/BF01766455. [DOI] [PubMed] [Google Scholar]
  7. Evans E., Leung A., Zhelev D. Synchrony of cell spreading and contraction force as phagocytes engulf large pathogens. J Cell Biol. 1993 Sep;122(6):1295–1300. doi: 10.1083/jcb.122.6.1295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Furukawa R., Kundra R., Fechheimer M. Formation of liquid crystals from actin filaments. Biochemistry. 1993 Nov 23;32(46):12346–12352. doi: 10.1021/bi00097a010. [DOI] [PubMed] [Google Scholar]
  9. Gershman L. C., Selden L. A., Kinosian H. J., Estes J. E. Actin-bound nucleotide/divalent cation interactions. Adv Exp Med Biol. 1994;358:35–49. doi: 10.1007/978-1-4615-2578-3_4. [DOI] [PubMed] [Google Scholar]
  10. Isambert H., Venier P., Maggs A. C., Fattoum A., Kassab R., Pantaloni D., Carlier M. F. Flexibility of actin filaments derived from thermal fluctuations. Effect of bound nucleotide, phalloidin, and muscle regulatory proteins. J Biol Chem. 1995 May 12;270(19):11437–11444. doi: 10.1074/jbc.270.19.11437. [DOI] [PubMed] [Google Scholar]
  11. Janmey P. A., Euteneuer U., Traub P., Schliwa M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol. 1991 Apr;113(1):155–160. doi: 10.1083/jcb.113.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Janmey P. A., Hvidt S., Käs J., Lerche D., Maggs A., Sackmann E., Schliwa M., Stossel T. P. The mechanical properties of actin gels. Elastic modulus and filament motions. J Biol Chem. 1994 Dec 23;269(51):32503–32513. [PubMed] [Google Scholar]
  13. Janmey P. A., Hvidt S., Lamb J., Stossel T. P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature. 1990 May 3;345(6270):89–92. doi: 10.1038/345089a0. [DOI] [PubMed] [Google Scholar]
  14. Janmey P. A., Hvidt S., Oster G. F., Lamb J., Stossel T. P., Hartwig J. H. Effect of ATP on actin filament stiffness. Nature. 1990 Sep 6;347(6288):95–99. doi: 10.1038/347095a0. [DOI] [PubMed] [Google Scholar]
  15. Janmey P. A., Hvidt S., Peetermans J., Lamb J., Ferry J. D., Stossel T. P. Viscoelasticity of F-actin and F-actin/gelsolin complexes. Biochemistry. 1988 Oct 18;27(21):8218–8227. doi: 10.1021/bi00421a035. [DOI] [PubMed] [Google Scholar]
  16. Janssen K. P., Eichinger L., Janmey P. A., Noegel A. A., Schliwa M., Witke W., Schleicher M. Viscoelastic properties of F-actin solutions in the presence of normal and mutated actin-binding proteins. Arch Biochem Biophys. 1996 Jan 15;325(2):183–189. doi: 10.1006/abbi.1996.0023. [DOI] [PubMed] [Google Scholar]
  17. Jen C. J., McIntire L. V., Bryan J. The viscoelastic properties of actin solutions. Arch Biochem Biophys. 1982 Jun;216(1):126–132. doi: 10.1016/0003-9861(82)90196-5. [DOI] [PubMed] [Google Scholar]
  18. Kroy K, Frey E. Force-Extension Relation and Plateau Modulus for Wormlike Chains. Phys Rev Lett. 1996 Jul 8;77(2):306–309. doi: 10.1103/PhysRevLett.77.306. [DOI] [PubMed] [Google Scholar]
  19. Käs J., Strey H., Tang J. X., Finger D., Ezzell R., Sackmann E., Janmey P. A. F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys J. 1996 Feb;70(2):609–625. doi: 10.1016/S0006-3495(96)79630-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MacKintosh FC, Käs J, Janmey PA. Elasticity of semiflexible biopolymer networks. Phys Rev Lett. 1995 Dec 11;75(24):4425–4428. doi: 10.1103/PhysRevLett.75.4425. [DOI] [PubMed] [Google Scholar]
  21. MacLean-Fletcher S. D., Pollard T. D. Viscometric analysis of the gelation of Acanthamoeba extracts and purification of two gelation factors. J Cell Biol. 1980 May;85(2):414–428. doi: 10.1083/jcb.85.2.414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Maciver S. K., Wachsstock D. H., Schwarz W. H., Pollard T. D. The actin filament severing protein actophorin promotes the formation of rigid bundles of actin filaments crosslinked with alpha-actinin. J Cell Biol. 1991 Dec;115(6):1621–1628. doi: 10.1083/jcb.115.6.1621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maruyama K., Kaibara M., Fukada E. Rheology of F-actin. I. Network of F-actin in solution. Biochim Biophys Acta. 1974 Nov 5;371(1):20–29. doi: 10.1016/0005-2795(74)90150-0. [DOI] [PubMed] [Google Scholar]
  24. Newman J., Zaner K. S., Schick K. L., Gershman L. C., Selden L. A., Kinosian H. J., Travis J. L., Estes J. E. Nucleotide exchange and rheometric studies with F-actin prepared from ATP- or ADP-monomeric actin. Biophys J. 1993 May;64(5):1559–1566. doi: 10.1016/S0006-3495(93)81525-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Oliver T., Lee J., Jacobson K. Forces exerted by locomoting cells. Semin Cell Biol. 1994 Jun;5(3):139–147. doi: 10.1006/scel.1994.1018. [DOI] [PubMed] [Google Scholar]
  26. Oosawa F. Physical chemistry of actin: past, present and future. Biophys Chem. 1993 Aug;47(2):101–111. doi: 10.1016/0301-4622(93)85028-g. [DOI] [PubMed] [Google Scholar]
  27. Orlova A., Egelman E. H. A conformational change in the actin subunit can change the flexibility of the actin filament. J Mol Biol. 1993 Jul 20;232(2):334–341. doi: 10.1006/jmbi.1993.1393. [DOI] [PubMed] [Google Scholar]
  28. Orlova A., Prochniewicz E., Egelman E. H. Structural dynamics of F-actin: II. Cooperativity in structural transitions. J Mol Biol. 1995 Feb 3;245(5):598–607. doi: 10.1006/jmbi.1994.0049. [DOI] [PubMed] [Google Scholar]
  29. Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
  30. Pollard T. D., Goldberg I., Schwarz W. H. Nucleotide exchange, structure, and mechanical properties of filaments assembled from ATP-actin and ADP-actin. J Biol Chem. 1992 Oct 5;267(28):20339–20345. [PubMed] [Google Scholar]
  31. Pollard T. D. Measurement of rate constants for actin filament elongation in solution. Anal Biochem. 1983 Oct 15;134(2):406–412. doi: 10.1016/0003-2697(83)90316-0. [DOI] [PubMed] [Google Scholar]
  32. Pollard T. D., Weeds A. G. The rate constant for ATP hydrolysis by polymerized actin. FEBS Lett. 1984 May 7;170(1):94–98. doi: 10.1016/0014-5793(84)81376-9. [DOI] [PubMed] [Google Scholar]
  33. Ruddies R., Goldmann W. H., Isenberg G., Sackmann E. The viscoelasticity of entangled actin networks: the influence of defects and modulation by talin and vinculin. Eur Biophys J. 1993;22(5):309–321. doi: 10.1007/BF00213554. [DOI] [PubMed] [Google Scholar]
  34. Satcher R. L., Jr, Dewey C. F., Jr Theoretical estimates of mechanical properties of the endothelial cell cytoskeleton. Biophys J. 1996 Jul;71(1):109–118. doi: 10.1016/S0006-3495(96)79206-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sato M., Leimbach G., Schwarz W. H., Pollard T. D. Mechanical properties of actin. J Biol Chem. 1985 Jul 15;260(14):8585–8592. [PubMed] [Google Scholar]
  36. Scharf R. E., Newman J. Mg- and Ca-actin filaments appear virtually identical in steady-state as determined by dynamic light scattering. Biochim Biophys Acta. 1995 Dec 6;1253(2):129–132. doi: 10.1016/0167-4838(95)00186-5. [DOI] [PubMed] [Google Scholar]
  37. Siegel L. M., Monty K. J. Determination of molecular weights and frictional ratios of proteins in impure systems by use of gel filtration and density gradient centrifugation. Application to crude preparations of sulfite and hydroxylamine reductases. Biochim Biophys Acta. 1966 Feb 7;112(2):346–362. doi: 10.1016/0926-6585(66)90333-5. [DOI] [PubMed] [Google Scholar]
  38. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  39. Steinmetz M. O., Goldie K. N., Aebi U. A correlative analysis of actin filament assembly, structure, and dynamics. J Cell Biol. 1997 Aug 11;138(3):559–574. doi: 10.1083/jcb.138.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Suzuki A., Maeda T., Ito T. Formation of liquid crystalline phase of actin filament solutions and its dependence on filament length as studied by optical birefringence. Biophys J. 1991 Jan;59(1):25–30. doi: 10.1016/S0006-3495(91)82194-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tang J. X., Janmey P. A. The polyelectrolyte nature of F-actin and the mechanism of actin bundle formation. J Biol Chem. 1996 Apr 12;271(15):8556–8563. doi: 10.1074/jbc.271.15.8556. [DOI] [PubMed] [Google Scholar]
  42. Tempel M, Isenberg G, Sackmann E. Temperature-induced sol-gel transition and microgel formation in alpha -actinin cross-linked actin networks: A rheological study. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Aug;54(2):1802–1810. doi: 10.1103/physreve.54.1802. [DOI] [PubMed] [Google Scholar]
  43. Wachsstock D. H., Schwartz W. H., Pollard T. D. Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J. 1993 Jul;65(1):205–214. doi: 10.1016/S0006-3495(93)81059-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wachsstock D. H., Schwarz W. H., Pollard T. D. Cross-linker dynamics determine the mechanical properties of actin gels. Biophys J. 1994 Mar;66(3 Pt 1):801–809. doi: 10.1016/s0006-3495(94)80856-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zaner K. S., Hartwig J. H. The effect of filament shortening on the mechanical properties of gel-filtered actin. J Biol Chem. 1988 Apr 5;263(10):4532–4536. [PubMed] [Google Scholar]
  46. Zaner K. S., Stossel T. P. Physical basis of the rheologic properties of F-actin. J Biol Chem. 1983 Sep 25;258(18):11004–11009. [PubMed] [Google Scholar]
  47. Zaner K. S., Stossel T. P. Some perspectives on the viscosity of actin filaments. J Cell Biol. 1982 Jun;93(3):987–991. doi: 10.1083/jcb.93.3.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zaner K. S. The effect of the 540-kilodalton actin cross-linking protein, actin-binding protein, on the mechanical properties of F-actin. J Biol Chem. 1986 Jun 15;261(17):7615–7620. [PubMed] [Google Scholar]
  49. Ziemann F., Rädler J., Sackmann E. Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophys J. 1994 Jun;66(6):2210–2216. doi: 10.1016/S0006-3495(94)81017-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES