Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

Biophysical Journal logoLink to Biophysical Journal
. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X

A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer.

D P Tieleman 1, H J Berendsen 1
PMCID: PMC1299620  PMID: 9635733

Abstract

In this paper we study the properties of pores formed by OmpF porin from Escherichia coli, based on a molecular dynamics simulation of the OmpF trimer, 318 palmitoyl-oleoyl-phosphatidylethanolamine lipids, 27 Na+ ions, and 12,992 water molecules. After equilibration and a nanosecond production run, the OmpF trimer exhibits a C-alpha root mean square deviation from the crystal structure of 0.23 nm and a stable secondary structure. No evidence is found for large-scale motions of the L3 loop. We investigate the pore dimensions, conductance, and the properties of water inside the pore. This water forms a complicated pattern, even when averaged over 1 ns of simulation time. Around the pore constriction zone the water dipoles are highly structured in the plane of the membrane, oriented by the strong transversal electric field. In addition, there is a net orientation along the pore axis pointing from the extracellular to the intracellular side of the bilayer. The diffusion coefficients of water inside the pore are greatly reduced compared to bulk. We compare our results to results from model pores (Breed et al., 1996. Biophys. J. 70:1 643-1 661; Sansom et al. 1997. Biophys. J. 73:2404-241 5) and discuss implications for further theoretical work.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berrier C., Coulombe A., Houssin C., Ghazi A. Fast and slow kinetics of porin channels from Escherichia coli reconstituted into giant liposomes and studied by patch-clamp. FEBS Lett. 1992 Jul 20;306(2-3):251–256. doi: 10.1016/0014-5793(92)81011-a. [DOI] [PubMed] [Google Scholar]
  3. Björkstén J., Soares C. M., Nilsson O., Tapia O. On the stability and plastic properties of the interior L3 loop in R. capsulatus porin. A molecular dynamics study. Protein Eng. 1994 Apr;7(4):487–493. doi: 10.1093/protein/7.4.487. [DOI] [PubMed] [Google Scholar]
  4. Breed J., Biggin P. C., Kerr I. D., Smart O. S., Sansom M. S. Alamethicin channels - modelling via restrained molecular dynamics simulations. Biochim Biophys Acta. 1997 Apr 26;1325(2):235–249. doi: 10.1016/s0005-2736(96)00262-3. [DOI] [PubMed] [Google Scholar]
  5. Breed J., Sankararamakrishnan R., Kerr I. D., Sansom M. S. Molecular dynamics simulations of water within models of ion channels. Biophys J. 1996 Apr;70(4):1643–1661. doi: 10.1016/S0006-3495(96)79727-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cowan S. W., Schirmer T., Rummel G., Steiert M., Ghosh R., Pauptit R. A., Jansonius J. N., Rosenbusch J. P. Crystal structures explain functional properties of two E. coli porins. Nature. 1992 Aug 27;358(6389):727–733. doi: 10.1038/358727a0. [DOI] [PubMed] [Google Scholar]
  7. Edholm O., Berger O., Jähnig F. Structure and fluctuations of bacteriorhodopsin in the purple membrane: a molecular dynamics study. J Mol Biol. 1995 Jun 30;250(1):94–111. doi: 10.1006/jmbi.1995.0361. [DOI] [PubMed] [Google Scholar]
  8. Jap B. K., Walian P. J. Biophysics of the structure and function of porins. Q Rev Biophys. 1990 Nov;23(4):367–403. doi: 10.1017/s003358350000559x. [DOI] [PubMed] [Google Scholar]
  9. Jeanteur D., Schirmer T., Fourel D., Simonet V., Rummel G., Widmer C., Rosenbusch J. P., Pattus F., Pagès J. M. Structural and functional alterations of a colicin-resistant mutant of OmpF porin from Escherichia coli. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10675–10679. doi: 10.1073/pnas.91.22.10675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  11. Karshikoff A., Spassov V., Cowan S. W., Ladenstein R., Schirmer T. Electrostatic properties of two porin channels from Escherichia coli. J Mol Biol. 1994 Jul 22;240(4):372–384. doi: 10.1006/jmbi.1994.1451. [DOI] [PubMed] [Google Scholar]
  12. Kreusch A., Schulz G. E. Refined structure of the porin from Rhodopseudomonas blastica. Comparison with the porin from Rhodobacter capsulatus. J Mol Biol. 1994 Nov 11;243(5):891–905. doi: 10.1006/jmbi.1994.1690. [DOI] [PubMed] [Google Scholar]
  13. Meyer J. E., Hofnung M., Schulz G. E. Structure of maltoporin from Salmonella typhimurium ligated with a nitrophenyl-maltotrioside. J Mol Biol. 1997 Mar 7;266(4):761–775. doi: 10.1006/jmbi.1996.0823. [DOI] [PubMed] [Google Scholar]
  14. Mouritsen O. G., Bloom M. Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct. 1993;22:145–171. doi: 10.1146/annurev.bb.22.060193.001045. [DOI] [PubMed] [Google Scholar]
  15. Mouritsen O. G., Dammann B., Fogedby H. C., Ipsen J. H., Jeppesen C., Jørgensen K., Risbo J., Sabra M. C., Sperotto M. M., Zuckermann M. J. The computer as a laboratory for the physical chemistry of membranes. Biophys Chem. 1995 Jun-Jul;55(1-2):55–68. doi: 10.1016/0301-4622(94)00142-7. [DOI] [PubMed] [Google Scholar]
  16. Obst S., Kastowsky M., Bradaczek H. Molecular dynamics simulations of six different fully hydrated monomeric conformers of Escherichia coli re-lipopolysaccharide in the presence and absence of Ca2+. Biophys J. 1997 Mar;72(3):1031–1046. doi: 10.1016/S0006-3495(97)78755-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Regehr W. G. Interplay between sodium and calcium dynamics in granule cell presynaptic terminals. Biophys J. 1997 Nov;73(5):2476–2488. doi: 10.1016/S0006-3495(97)78276-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sansom M. S., Kerr I. D., Breed J., Sankararamakrishnan R. Water in channel-like cavities: structure and dynamics. Biophys J. 1996 Feb;70(2):693–702. doi: 10.1016/S0006-3495(96)79609-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sansom M. S., Smith G. R., Adcock C., Biggin P. C. The dielectric properties of water within model transbilayer pores. Biophys J. 1997 Nov;73(5):2404–2415. doi: 10.1016/S0006-3495(97)78269-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Schabert F. A., Henn C., Engel A. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science. 1995 Apr 7;268(5207):92–94. doi: 10.1126/science.7701347. [DOI] [PubMed] [Google Scholar]
  21. Schirmer T., Keller T. A., Wang Y. F., Rosenbusch J. P. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science. 1995 Jan 27;267(5197):512–514. doi: 10.1126/science.7824948. [DOI] [PubMed] [Google Scholar]
  22. Schulz G. E. Porins: general to specific, native to engineered passive pores. Curr Opin Struct Biol. 1996 Aug;6(4):485–490. doi: 10.1016/s0959-440x(96)80113-8. [DOI] [PubMed] [Google Scholar]
  23. Shen L., Bassolino D., Stouch T. Transmembrane helix structure, dynamics, and interactions: multi-nanosecond molecular dynamics simulations. Biophys J. 1997 Jul;73(1):3–20. doi: 10.1016/S0006-3495(97)78042-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Smart O. S., Breed J., Smith G. R., Sansom M. S. A novel method for structure-based prediction of ion channel conductance properties. Biophys J. 1997 Mar;72(3):1109–1126. doi: 10.1016/S0006-3495(97)78760-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Soares C. M., Björkstén J., Tapia O. L3 loop-mediated mechanisms of pore closing in porin: a molecular dynamics perturbation approach. Protein Eng. 1995 Jan;8(1):5–12. doi: 10.1093/protein/8.1.5. [DOI] [PubMed] [Google Scholar]
  26. Tieleman D. P., Marrink S. J., Berendsen H. J. A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta. 1997 Nov 21;1331(3):235–270. doi: 10.1016/s0304-4157(97)00008-7. [DOI] [PubMed] [Google Scholar]
  27. Warshel A., Aqvist J. Electrostatic energy and macromolecular function. Annu Rev Biophys Biophys Chem. 1991;20:267–298. doi: 10.1146/annurev.bb.20.060191.001411. [DOI] [PubMed] [Google Scholar]
  28. Watanabe M., Rosenbusch J., Schirmer T., Karplus M. Computer simulations of the OmpF porin from the outer membrane of Escherichia coli. Biophys J. 1997 May;72(5):2094–2102. doi: 10.1016/S0006-3495(97)78852-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weiss M. S., Schulz G. E. Structure of porin refined at 1.8 A resolution. J Mol Biol. 1992 Sep 20;227(2):493–509. doi: 10.1016/0022-2836(92)90903-w. [DOI] [PubMed] [Google Scholar]
  30. Wiese A., Schröder G., Brandenburg K., Hirsch A., Welte W., Seydel U. Influence of the lipid matrix on incorporation and function of LPS-free porin from Paracoccus denitrificans. Biochim Biophys Acta. 1994 Mar 23;1190(2):231–242. doi: 10.1016/0005-2736(94)90079-5. [DOI] [PubMed] [Google Scholar]
  31. Woolf T. B., Roux B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996 Jan;24(1):92–114. doi: 10.1002/(SICI)1097-0134(199601)24:1<92::AID-PROT7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  32. van der Spoel D., van Buuren A. R., Tieleman D. P., Berendsen H. J. Molecular dynamics simulations of peptides from BPTI: a closer look at amide-aromatic interactions. J Biomol NMR. 1996 Oct;8(3):229–238. doi: 10.1007/BF00410322. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES