Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jun;74(6):2906–2911. doi: 10.1016/S0006-3495(98)77997-4

Importance of explicit salt ions for protein stability in molecular dynamics simulation.

G T Ibragimova 1, R C Wade 1
PMCID: PMC1299631  PMID: 9635744

Abstract

The accurate and efficient treatment of electrostatic interactions is one of the challenging problems of molecular dynamics simulation. Truncation procedures such as switching or shifting energies or forces lead to artifacts and significantly reduced accuracy. The particle mesh Ewald (PME) method is one approach to overcome these problems by providing a computationally efficient means of calculating all long-range electrostatic interactions in a periodic simulation box by use of fast Fourier transformation techniques. For the application of the PME method to the simulation of a protein with a net charge in aqueous solution, counterions are added to neutralize the system. The usual procedure is to add charge-balancing counterions close to charged residues to neutralize the protein surface. In the present article, we show that for MD simulation of a small protein of marginal stability, the YAP-WW domain, explicit modeling of 0.2 M ionic strength (in addition to the charge-balancing counterions) is necessary to maintain a stable protein structure. Without explicit ions throughout the periodic simulation box, the charge-balancing counterions on the protein surface diffuse away from the protein, resulting in destruction of the beta-sheet secondary structure of the WW domain.

Full Text

The Full Text of this article is available as a PDF (72.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auffinger P., Westhof E. RNA hydration: three nanoseconds of multiple molecular dynamics simulations of the solvated tRNA(Asp) anticodon hairpin. J Mol Biol. 1997 Jun 13;269(3):326–341. doi: 10.1006/jmbi.1997.1022. [DOI] [PubMed] [Google Scholar]
  2. Avbelj F., Moult J., Kitson D. H., James M. N., Hagler A. T. Molecular dynamics study of the structure and dynamics of a protein molecule in a crystalline ionic environment, Streptomyces griseus protease A. Biochemistry. 1990 Sep 18;29(37):8658–8676. doi: 10.1021/bi00489a023. [DOI] [PubMed] [Google Scholar]
  3. Cheatham T. E., 3rd, Kollman P. A. Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT]2 in the presence of hexaamminecobalt(III). Structure. 1997 Oct 15;5(10):1297–1311. doi: 10.1016/s0969-2126(97)00282-7. [DOI] [PubMed] [Google Scholar]
  4. Chen H. I., Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7819–7823. doi: 10.1073/pnas.92.17.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fox T., Kollman P. A. The application of different solvation and electrostatic models in molecular dynamics simulations of ubiquitin: how well is the X-ray structure "maintained"? Proteins. 1996 Jul;25(3):315–334. doi: 10.1002/(SICI)1097-0134(199607)25:3<315::AID-PROT4>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  6. Fritsch V., Ravishanker G., Beveridge D. L., Westhof E. Molecular dynamics simulations of poly(dA).poly(dT): comparisons between implicit and explicit solvent representations. Biopolymers. 1993 Oct;33(10):1537–1552. doi: 10.1002/bip.360331005. [DOI] [PubMed] [Google Scholar]
  7. Garnier L., Wills J. W., Verderame M. F., Sudol M. WW domains and retrovirus budding. Nature. 1996 Jun 27;381(6585):744–745. doi: 10.1038/381744a0. [DOI] [PubMed] [Google Scholar]
  8. Hooft R. W., Sander C., Vriend G. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins. 1996 Dec;26(4):363–376. doi: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  9. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  10. Li L., Darden T. A., Freedman S. J., Furie B. C., Furie B., Baleja J. D., Smith H., Hiskey R. G., Pedersen L. G. Refinement of the NMR solution structure of the gamma-carboxyglutamic acid domain of coagulation factor IX using molecular dynamics simulation with initial Ca2+ positions determined by a genetic algorithm. Biochemistry. 1997 Feb 25;36(8):2132–2138. doi: 10.1021/bi962250r. [DOI] [PubMed] [Google Scholar]
  11. Loncharich R. J., Brooks B. R. The effects of truncating long-range forces on protein dynamics. Proteins. 1989;6(1):32–45. doi: 10.1002/prot.340060104. [DOI] [PubMed] [Google Scholar]
  12. Macias M. J., Hyvönen M., Baraldi E., Schultz J., Sudol M., Saraste M., Oschkinat H. Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature. 1996 Aug 15;382(6592):646–649. doi: 10.1038/382646a0. [DOI] [PubMed] [Google Scholar]
  13. Norberto de Souza O., Ornstein R. L. Effect of warmup protocol and sampling time on convergence of molecular dynamics simulations of a DNA dodecamer using AMBER 4.1 and particle-mesh Ewald method. J Biomol Struct Dyn. 1997 Apr;14(5):607–611. doi: 10.1080/07391102.1997.10508160. [DOI] [PubMed] [Google Scholar]
  14. Schreiber H., Steinhauser O. Cutoff size does strongly influence molecular dynamics results on solvated polypeptides. Biochemistry. 1992 Jun 30;31(25):5856–5860. doi: 10.1021/bi00140a022. [DOI] [PubMed] [Google Scholar]
  15. Sudol M. Structure and function of the WW domain. Prog Biophys Mol Biol. 1996;65(1-2):113–132. doi: 10.1016/s0079-6107(96)00008-9. [DOI] [PubMed] [Google Scholar]
  16. Yelle R. B., Park N. S., Ichiye T. Molecular dynamics simulations of rubredoxin from Clostridium pasteurianum: changes in structure and electrostatic potential during redox reactions. Proteins. 1995 Jun;22(2):154–167. doi: 10.1002/prot.340220208. [DOI] [PubMed] [Google Scholar]
  17. York D. M., Darden T. A., Pedersen L. G., Anderson M. W. Molecular dynamics simulation of HIV-1 protease in a crystalline environment and in solution. Biochemistry. 1993 Feb 16;32(6):1443–1453. doi: 10.1021/bi00057a007. [DOI] [PubMed] [Google Scholar]
  18. York D. M., Wlodawer A., Pedersen L. G., Darden T. A. Atomic-level accuracy in simulations of large protein crystals. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8715–8718. doi: 10.1073/pnas.91.18.8715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Young M. A., Ravishanker G., Beveridge D. L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997 Nov;73(5):2313–2336. doi: 10.1016/S0006-3495(97)78263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. de Souza O. N., Ornstein R. L. Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method. Biophys J. 1997 Jun;72(6):2395–2397. doi: 10.1016/S0006-3495(97)78884-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES