Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jun;74(6):2918–2925. doi: 10.1016/S0006-3495(98)77999-8

Cluster organization of ion channels formed by the antibiotic syringomycin E in bilayer lipid membranes.

Y A Kaulin 1, L V Schagina 1, S M Bezrukov 1, V V Malev 1, A M Feigin 1, J Y Takemoto 1, J H Teeter 1, J G Brand 1
PMCID: PMC1299633  PMID: 9635746

Abstract

The cyclic lipodepsipeptide, syringomycin E, when incorporated into planar lipid bilayer membranes, forms two types of channels (small and large) that are different in conductance by a factor of sixfold. To discriminate between a cluster organization-type channel structure and other possible different structures for the two channel types, their ionic selectivity and pore size were determined. Pore size was assessed using water-soluble polymers. Ion selectivity was found to be essentially the same for both the small and large channels. Their reversal (zero current) potentials with the sign corresponding to anionic selectivity did not differ by more than 3 mV at a twofold electrolyte gradient across the bilayer. Reduction in the single-channel conductance induced by poly(ethylene glycol)s of different molecular weights demonstrated that the aqueous pore sizes of the small and large channels did not differ by more than 2% and were close to 1 nm. Based on their virtually identical selectivity and size, we conclude that large syringomycin E channels are clusters of small ones exhibiting synchronous opening and closing.

Full Text

The Full Text of this article is available as a PDF (83.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bezrukov S. M., Vodyanoy I. Probing alamethicin channels with water-soluble polymers. Effect on conductance of channel states. Biophys J. 1993 Jan;64(1):16–25. doi: 10.1016/S0006-3495(93)81336-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bidwai A. P., Zhang L., Bachmann R. C., Takemoto J. Y. Mechanism of Action of Pseudomonas syringae Phytotoxin, Syringomycin : Stimulation of Red Beet Plasma Membrane ATPase Activity. Plant Physiol. 1987 Jan;83(1):39–43. doi: 10.1104/pp.83.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Desai S. A., Rosenberg R. L. Pore size of the malaria parasite's nutrient channel. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):2045–2049. doi: 10.1073/pnas.94.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Feigin A. M., Takemoto J. Y., Wangspa R., Teeter J. H., Brand J. G. Properties of voltage-gated ion channels formed by syringomycin E in planar lipid bilayers. J Membr Biol. 1996 Jan;149(1):41–47. doi: 10.1007/s002329900005. [DOI] [PubMed] [Google Scholar]
  5. Fox J. A. Ion channel subconductance states. J Membr Biol. 1987;97(1):1–8. doi: 10.1007/BF01869609. [DOI] [PubMed] [Google Scholar]
  6. Geletyuk V. I., Kazachenko V. N. Single Cl- channels in molluscan neurones: multiplicity of the conductance states. J Membr Biol. 1985;86(1):9–15. doi: 10.1007/BF01871605. [DOI] [PubMed] [Google Scholar]
  7. Hutchison M. L., Tester M. A., Gross D. C. Role of biosurfactant and ion channel-forming activities of syringomycin in transmembrane ion flux: a model for the mechanism of action in the plant-pathogen interaction. Mol Plant Microbe Interact. 1995 Jul-Aug;8(4):610–620. doi: 10.1094/mpmi-8-0610. [DOI] [PubMed] [Google Scholar]
  8. Korchev Y. E., Bashford C. L., Alder G. M., Kasianowicz J. J., Pasternak C. A. Low conductance states of a single ion channel are not 'closed'. J Membr Biol. 1995 Oct;147(3):233–239. doi: 10.1007/BF00234521. [DOI] [PubMed] [Google Scholar]
  9. Krasilnikov O. V., Sabirov R. Z., Ternovsky V. I., Merzliak P. G., Muratkhodjaev J. N. A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. FEMS Microbiol Immunol. 1992 Sep;5(1-3):93–100. doi: 10.1111/j.1574-6968.1992.tb05891.x. [DOI] [PubMed] [Google Scholar]
  10. Larsen E. H., Gabriei S. E., Stutts M. J., Fullton J., Price E. M., Boucher R. C. Endogenous chloride channels of insect sf9 cells. Evidence for coordinated activity of small elementary channel units. J Gen Physiol. 1996 Jun;107(6):695–714. doi: 10.1085/jgp.107.6.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Meves H., Nagy K. Multiple conductance states of the sodium channel and of other ion channels. Biochim Biophys Acta. 1989 Jan 18;988(1):99–105. doi: 10.1016/0304-4157(89)90005-1. [DOI] [PubMed] [Google Scholar]
  12. Olofsson A., Kavéus U., Thelestam M., Hebert H. The projection structure of alpha-toxin from Staphylococcus aureus in human platelet membranes as analyzed by electron microscopy and image processing. J Ultrastruct Mol Struct Res. 1988 Aug;100(2):194–200. doi: 10.1016/0889-1605(88)90026-2. [DOI] [PubMed] [Google Scholar]
  13. Parsegian V. A., Bezrukov S. M., Vodyanoy I. Watching small molecules move: interrogating ionic channels using neutral solutes. Biosci Rep. 1995 Dec;15(6):503–514. doi: 10.1007/BF01204353. [DOI] [PubMed] [Google Scholar]
  14. Schreibmayer W., Tritthart H. A., Schindler H. The cardiac sodium channel shows a regular substate pattern indicating synchronized activity of several ion pathways instead of one. Biochim Biophys Acta. 1989 Nov 17;986(1):172–186. doi: 10.1016/0005-2736(89)90288-5. [DOI] [PubMed] [Google Scholar]
  15. Teeter J. H., Brand J. G., Kumazawa T. A stimulus-activated conductance in isolated taste epithelial membranes. Biophys J. 1990 Jul;58(1):253–259. doi: 10.1016/S0006-3495(90)82370-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Watras J., Bezprozvanny I., Ehrlich B. E. Inositol 1,4,5-trisphosphate-gated channels in cerebellum: presence of multiple conductance states. J Neurosci. 1991 Oct;11(10):3239–3245. doi: 10.1523/JNEUROSCI.11-10-03239.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. York J. P., Drago J. R. Torsion and the contralateral testicle. J Urol. 1985 Feb;133(2):294–297. doi: 10.1016/s0022-5347(17)48926-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES