Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jun;74(6):2945–2952. doi: 10.1016/S0006-3495(98)78001-4

Slow inactivation in human cardiac sodium channels.

J E Richmond 1, D E Featherstone 1, H A Hartmann 1, P C Ruben 1
PMCID: PMC1299635  PMID: 9635748

Abstract

The available pool of sodium channels, and thus cell excitability, is regulated by both fast and slow inactivation. In cardiac tissue, the requirement for sustained firing of long-duration action potentials suggests that slow inactivation in cardiac sodium channels may differ from slow inactivation in skeletal muscle sodium channels. To test this hypothesis, we used the macropatch technique to characterize slow inactivation in human cardiac sodium channels heterologously expressed in Xenopus oocytes. Slow inactivation was isolated from fast inactivation kinetically (by selectively recovering channels from fast inactivation before measurement of slow inactivation) and structurally (by modification of fast inactivation by mutation of IFM1488QQQ). Time constants of slow inactivation in cardiac sodium channels were larger than previously reported for skeletal muscle sodium channels. In addition, steady-state slow inactivation was only 40% complete in cardiac sodium channels, compared to 80% in skeletal muscle channels. These results suggest that cardiac sodium channel slow inactivation is adapted for the sustained depolarizations found in normally functioning cardiac tissue. Complete slow inactivation in the fast inactivation modified IFM1488QQQ cardiac channel mutant suggests that this impairment of slow inactivation may result from an interaction between fast and slow inactivation.

Full Text

The Full Text of this article is available as a PDF (128.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M., Bezanilla F. Inactivation of the sodium channel. II. Gating current experiments. J Gen Physiol. 1977 Nov;70(5):567–590. doi: 10.1085/jgp.70.5.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown A. M., Lee K. S., Powell T. Sodium current in single rat heart muscle cells. J Physiol. 1981 Sep;318:479–500. doi: 10.1113/jphysiol.1981.sp013879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cummins T. R., Sigworth F. J. Impaired slow inactivation in mutant sodium channels. Biophys J. 1996 Jul;71(1):227–236. doi: 10.1016/S0006-3495(96)79219-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Featherstone D. E., Richmond J. E., Ruben P. C. Interaction between fast and slow inactivation in Skm1 sodium channels. Biophys J. 1996 Dec;71(6):3098–3109. doi: 10.1016/S0006-3495(96)79504-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fleidervish I. A., Friedman A., Gutnick M. J. Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol. 1996 May 15;493(Pt 1):83–97. doi: 10.1113/jphysiol.1996.sp021366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fozzard H. A., Hanck D. A. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol Rev. 1996 Jul;76(3):887–926. doi: 10.1152/physrev.1996.76.3.887. [DOI] [PubMed] [Google Scholar]
  7. Goldman L. Sodium channel inactivation from closed states: evidence for an intrinsic voltage dependency. Biophys J. 1995 Dec;69(6):2369–2377. doi: 10.1016/S0006-3495(95)80106-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hanck D. A., Sheets M. F. Modification of inactivation in cardiac sodium channels: ionic current studies with Anthopleurin-A toxin. J Gen Physiol. 1995 Oct;106(4):601–616. doi: 10.1085/jgp.106.4.601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartmann H. A., Tiedeman A. A., Chen S. F., Brown A. M., Kirsch G. E. Effects of III-IV linker mutations on human heart Na+ channel inactivation gating. Circ Res. 1994 Jul;75(1):114–122. doi: 10.1161/01.res.75.1.114. [DOI] [PubMed] [Google Scholar]
  10. Hayward L. J., Brown R. H., Jr, Cannon S. C. Slow inactivation differs among mutant Na channels associated with myotonia and periodic paralysis. Biophys J. 1997 Mar;72(3):1204–1219. doi: 10.1016/S0006-3495(97)78768-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Isom L. L., De Jongh K. S., Patton D. E., Reber B. F., Offord J., Charbonneau H., Walsh K., Goldin A. L., Catterall W. A. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science. 1992 May 8;256(5058):839–842. doi: 10.1126/science.1375395. [DOI] [PubMed] [Google Scholar]
  12. Kallen R. G., Sheng Z. H., Yang J., Chen L. Q., Rogart R. B., Barchi R. L. Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron. 1990 Feb;4(2):233–242. doi: 10.1016/0896-6273(90)90098-z. [DOI] [PubMed] [Google Scholar]
  13. Ono K., Fozzard H. A., Hanck D. A. Mechanism of cAMP-dependent modulation of cardiac sodium channel current kinetics. Circ Res. 1993 Apr;72(4):807–815. doi: 10.1161/01.res.72.4.807. [DOI] [PubMed] [Google Scholar]
  14. Richmond J. E., Featherstone D. E., Ruben P. C. Human Na+ channel fast and slow inactivation in paramyotonia congenita mutants expressed in Xenopus laevis oocytes. J Physiol. 1997 Mar 15;499(Pt 3):589–600. doi: 10.1113/jphysiol.1997.sp021952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ruben P. C., Starkus J. G., Rayner M. D. Steady-state availability of sodium channels. Interactions between activation and slow inactivation. Biophys J. 1992 Apr;61(4):941–955. doi: 10.1016/S0006-3495(92)81901-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rudy B. Slow inactivation of the sodium conductance in squid giant axons. Pronase resistance. J Physiol. 1978 Oct;283:1–21. doi: 10.1113/jphysiol.1978.sp012485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ruff R. L., Simoncini L., Stühmer W. Comparison between slow sodium channel inactivation in rat slow- and fast-twitch muscle. J Physiol. 1987 Feb;383:339–348. doi: 10.1113/jphysiol.1987.sp016412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ruff R. L., Simoncini L., Stühmer W. Slow sodium channel inactivation in mammalian muscle: a possible role in regulating excitability. Muscle Nerve. 1988 May;11(5):502–510. doi: 10.1002/mus.880110514. [DOI] [PubMed] [Google Scholar]
  19. Schneider M., Proebstle T., Hombach V., Hannekum A., Rüdel R. Characterization of the sodium currents in isolated human cardiocytes. Pflugers Arch. 1994 Aug;428(1):84–90. doi: 10.1007/BF00374755. [DOI] [PubMed] [Google Scholar]
  20. Shander G. S., Fan Z., Makielski J. C. Slowly recovering cardiac sodium current in rat ventricular myocytes: effects of conditioning duration and recovery potential. J Cardiovasc Electrophysiol. 1995 Oct;6(10 Pt 1):786–795. doi: 10.1111/j.1540-8167.1995.tb00355.x. [DOI] [PubMed] [Google Scholar]
  21. Townsend C., Horn R. Effect of alkali metal cations on slow inactivation of cardiac Na+ channels. J Gen Physiol. 1997 Jul;110(1):23–33. doi: 10.1085/jgp.110.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Valenzuela C., Bennett P. B., Jr Gating of cardiac Na+ channels in excised membrane patches after modification by alpha-chymotrypsin. Biophys J. 1994 Jul;67(1):161–171. doi: 10.1016/S0006-3495(94)80465-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vedantham V., Cannon S. C. Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na+ channels. J Gen Physiol. 1998 Jan;111(1):83–93. doi: 10.1085/jgp.111.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang D. W., George A. L., Jr, Bennett P. B. Comparison of heterologously expressed human cardiac and skeletal muscle sodium channels. Biophys J. 1996 Jan;70(1):238–245. doi: 10.1016/S0006-3495(96)79566-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang S. Y., Wang G. K. A mutation in segment I-S6 alters slow inactivation of sodium channels. Biophys J. 1997 Apr;72(4):1633–1640. doi: 10.1016/S0006-3495(97)78809-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. West J. W., Patton D. E., Scheuer T., Wang Y., Goldin A. L., Catterall W. A. A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10910–10914. doi: 10.1073/pnas.89.22.10910. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES