Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jun;74(6):3010–3014. doi: 10.1016/S0006-3495(98)78008-7

Intensive extrusion and occlusion of water in ganglioside micelles with thermal reversibility.

M Hirai 1, T Takizawa 1
PMCID: PMC1299642  PMID: 9635755

Abstract

By using a shell-modeling analysis for small-angle scattering data of ganglioside micellar dispersion, we recently reported that the elevation of temperature induces a significant shrinkage of the hydrophilic region of the ganglioside micelle, suggesting that the oligosaccharide chains with sialic acid residues of ganglioside molecules change the conformation, sensitively responding to a change in temperature (Hirai et al., 1996. Biophys. J. 70:1761-1768; J. Phys. Chem. 100:11675-11680). We have carried out further analyses of the temperature dependence of the structural parameters reported previously, and we have found clear evidence of reversible extrusion and occlusion of a large amount of water in the hydrophilic region of the ganglioside micelle in the physiological temperature range of 6-60 degrees C. The present results suggest a remarkable function of ganglioside molecules: they change the hydrophilicity of the cell surface locally as a response to variations in temperature. This phenomenon might be involved in various surface events, such as cell-cell interaction and cell surface-protein interaction.

Full Text

The Full Text of this article is available as a PDF (83.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Büldt G., Gally H. U., Seelig A., Seelig J., Zaccai G. Neutron diffraction studies on selectively deuterated phospholipid bilayers. Nature. 1978 Jan 12;271(5641):182–184. doi: 10.1038/271182a0. [DOI] [PubMed] [Google Scholar]
  2. Corti M., Cantú L. Application of scattering techniques in the domain of amphiphiles. Adv Colloid Interface Sci. 1990 Aug;32(2-3):151–166. doi: 10.1016/0001-8686(90)80016-s. [DOI] [PubMed] [Google Scholar]
  3. Hakomori S., Igarashi Y. Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling. Adv Lipid Res. 1993;25:147–162. [PubMed] [Google Scholar]
  4. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  5. Hirai M., Iwase H., Arai S., Takizawa T., Hayashi K. Interaction of gangliosides with proteins depending on oligosaccharide chain and protein surface modification. Biophys J. 1998 Mar;74(3):1380–1387. doi: 10.1016/S0006-3495(98)77850-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hirai M., Takizawa T., Yabuki S., Nakata Y., Hayashi K. Thermotropic phase behavior and stability of monosialoganglioside micelles in aqueous solution. Biophys J. 1996 Apr;70(4):1761–1768. doi: 10.1016/S0006-3495(96)79739-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kenworthy A. K., Simon S. A., McIntosh T. J. Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol). Biophys J. 1995 May;68(5):1903–1920. doi: 10.1016/S0006-3495(95)80368-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Maggio B., Ariga T., Sturtevant J. M., Yu R. K. Thermotropic behavior of binary mixtures of dipalmitoylphosphatidylcholine and glycosphingolipids in aqueous dispersions. Biochim Biophys Acta. 1985 Aug 8;818(1):1–12. doi: 10.1016/0005-2736(85)90131-2. [DOI] [PubMed] [Google Scholar]
  9. Sonnino S., Cantù L., Corti M., Acquotti D., Venerando B. Aggregative properties of gangliosides in solution. Chem Phys Lipids. 1994 May 6;71(1):21–45. doi: 10.1016/0009-3084(94)02304-2. [DOI] [PubMed] [Google Scholar]
  10. Tanaka T, Sato E, Hirokawa Y, Hirotsu S, Peetermans J. Critical kinetics of volume phase transition of gels. Phys Rev Lett. 1985 Nov 25;55(22):2455–2458. doi: 10.1103/PhysRevLett.55.2455. [DOI] [PubMed] [Google Scholar]
  11. Ueki T., Hiragi Y., Kataoka M., Inoko Y., Amemiya Y., Izumi Y., Tagawa H., Muroga Y. Aggregation of bovine serum albumin upon cleavage of its disulfide bonds, studied by the time-resolved small-angle X-ray scattering technique with synchrotron radiation. Biophys Chem. 1985 Nov;23(1-2):115–124. doi: 10.1016/0301-4622(85)80069-7. [DOI] [PubMed] [Google Scholar]
  12. Worcester D. L., Franks N. P. Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutrol diffraction. J Mol Biol. 1976 Jan 25;100(3):359–378. doi: 10.1016/s0022-2836(76)80068-x. [DOI] [PubMed] [Google Scholar]
  13. Zamyatnin A. A. Protein volume in solution. Prog Biophys Mol Biol. 1972;24:107–123. doi: 10.1016/0079-6107(72)90005-3. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES