Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jun;74(6):3182–3189. doi: 10.1016/S0006-3495(98)78024-5

Properties of intramolecular proton transfer in carbonic anhydrase III.

C Tu 1, M Qian 1, J N Earnhardt 1, P J Laipis 1, D N Silverman 1
PMCID: PMC1299658  PMID: 9635771

Abstract

We investigated the efficiency of glutamic acid 64 and aspartic acid 64 as proton donors to the zinc-bound hydroxide in a series of site-specific mutants of human carbonic anhydrase III (HCA III). Rate constants for this intramolecular proton transfer, a step in the catalyzed dehydration of bicarbonate, were determined from the proton-transfer-dependent rates of release of H2 18O from the enzyme measured by mass spectrometry. The free energy plots representing these rate constants could be fit by the Marcus rate theory, resulting in an intrinsic barrier for the proton transfer of deltaG0++ = 2.2 +/- 0.5 kcal/mol, and a work function or thermodynamic contribution to the free energy of reaction wr = 10.8 +/- 0.1 kcal/mol. These values are very similar in magnitude to the Marcus parameters describing intramolecular proton transfer from His64 and His67 to the zinc-bound hydroxide in mutants of HCA III. That result and the equivalent efficiency of Glu64 and Asp64 as proton donors in the catalysis by CA III demonstrate a lack of specificity in proton transfer from these sites, which is indirect evidence of a number of proton conduction pathways through different structures of intervening water chains. The dominance of the thermodynamic contribution or work function for all of these proton transfers is consistent with the view that formation and breaking of hydrogen bonds in such water chains is a limiting factor for proton translocation.

Full Text

The Full Text of this article is available as a PDF (82.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Engberg P., Millqvist E., Pohl G., Lindskog S. Purification and some properties of carbonic anhydrase from bovine skeletal muscle. Arch Biochem Biophys. 1985 Sep;241(2):628–638. doi: 10.1016/0003-9861(85)90589-2. [DOI] [PubMed] [Google Scholar]
  2. Eriksson A. E., Jones T. A., Liljas A. Refined structure of human carbonic anhydrase II at 2.0 A resolution. Proteins. 1988;4(4):274–282. doi: 10.1002/prot.340040406. [DOI] [PubMed] [Google Scholar]
  3. Eriksson A. E., Liljas A. Refined structure of bovine carbonic anhydrase III at 2.0 A resolution. Proteins. 1993 May;16(1):29–42. doi: 10.1002/prot.340160104. [DOI] [PubMed] [Google Scholar]
  4. Heck R. W., Boriack-Sjodin P. A., Qian M., Tu C., Christianson D. W., Laipis P. J., Silverman D. N. Structure-based design of an intramolecular proton transfer site in murine carbonic anhydrase V. Biochemistry. 1996 Sep 10;35(36):11605–11611. doi: 10.1021/bi9608018. [DOI] [PubMed] [Google Scholar]
  5. Heck R. W., Tanhauser S. M., Manda R., Tu C., Laipis P. J., Silverman D. N. Catalytic properties of mouse carbonic anhydrase V. J Biol Chem. 1994 Oct 7;269(40):24742–24746. [PubMed] [Google Scholar]
  6. Hewett-Emmett D., Tashian R. E. Functional diversity, conservation, and convergence in the evolution of the alpha-, beta-, and gamma-carbonic anhydrase gene families. Mol Phylogenet Evol. 1996 Feb;5(1):50–77. doi: 10.1006/mpev.1996.0006. [DOI] [PubMed] [Google Scholar]
  7. Håkansson K., Carlsson M., Svensson L. A., Liljas A. Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J Mol Biol. 1992 Oct 20;227(4):1192–1204. doi: 10.1016/0022-2836(92)90531-n. [DOI] [PubMed] [Google Scholar]
  8. Jackman J. E., Merz K. M., Jr, Fierke C. A. Disruption of the active site solvent network in carbonic anhydrase II decreases the efficiency of proton transfer. Biochemistry. 1996 Dec 24;35(51):16421–16428. doi: 10.1021/bi961786+. [DOI] [PubMed] [Google Scholar]
  9. Jewell D. A., Tu C. K., Paranawithana S. R., Tanhauser S. M., LoGrasso P. V., Laipis P. J., Silverman D. N. Enhancement of the catalytic properties of human carbonic anhydrase III by site-directed mutagenesis. Biochemistry. 1991 Feb 12;30(6):1484–1490. doi: 10.1021/bi00220a006. [DOI] [PubMed] [Google Scholar]
  10. Koenig S. H., Brown R. D., 3rd Exchange of labeled nuclei in the CO2--HCO3--solvent system catalyzed by carbonic anhydrase. Biophys J. 1981 Jul;35(1):59–78. doi: 10.1016/S0006-3495(81)84774-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liang Z., Jonsson B. H., Lindskog S. Proton transfer in the catalytic mechanism of carbonic anhydrase. Effects of placing histidine residues at various positions in the active site of human isoenzyme II. Biochim Biophys Acta. 1993 Nov 10;1203(1):142–146. doi: 10.1016/0167-4838(93)90048-v. [DOI] [PubMed] [Google Scholar]
  12. LoGrasso P. V., Tu C. K., Jewell D. A., Wynns G. C., Laipis P. J., Silverman D. N. Catalytic enhancement of human carbonic anhydrase III by replacement of phenylalanine-198 with leucine. Biochemistry. 1991 Aug 27;30(34):8463–8470. doi: 10.1021/bi00098a025. [DOI] [PubMed] [Google Scholar]
  13. LoGrasso P. V., Tu C., Chen X., Taoka S., Laipis P. J., Silverman D. N. Influence of amino acid replacement at position 198 on catalytic properties of zinc-bound water in human carbonic anhydrase III. Biochemistry. 1993 Jun 8;32(22):5786–5791. doi: 10.1021/bi00073a010. [DOI] [PubMed] [Google Scholar]
  14. Mildvan A. S., Weber D. J., Kuliopulos A. Quantitative interpretations of double mutations of enzymes. Arch Biochem Biophys. 1992 May 1;294(2):327–340. doi: 10.1016/0003-9861(92)90692-p. [DOI] [PubMed] [Google Scholar]
  15. Nagle J. F., Morowitz H. J. Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci U S A. 1978 Jan;75(1):298–302. doi: 10.1073/pnas.75.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pomès R., Roux B. Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel. Biophys J. 1996 Jul;71(1):19–39. doi: 10.1016/S0006-3495(96)79211-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Qian M., Tu C., Earnhardt J. N., Laipis P. J., Silverman D. N. Glutamate and aspartate as proton shuttles in mutants of carbonic anhydrase. Biochemistry. 1997 Dec 16;36(50):15758–15764. doi: 10.1021/bi972081q. [DOI] [PubMed] [Google Scholar]
  18. Ren X., Tu C., Laipis P. J., Silverman D. N. Proton transfer by histidine 67 in site-directed mutants of human carbonic anhydrase III. Biochemistry. 1995 Jul 4;34(26):8492–8498. doi: 10.1021/bi00026a033. [DOI] [PubMed] [Google Scholar]
  19. Scolnick L. R., Christianson D. W. X-ray crystallographic studies of alanine-65 variants of carbonic anhydrase II reveal the structural basis of compromised proton transfer in catalysis. Biochemistry. 1996 Dec 24;35(51):16429–16434. doi: 10.1021/bi9617872. [DOI] [PubMed] [Google Scholar]
  20. Silverman D. N. Carbonic anhydrase: oxygen-18 exchange catalyzed by an enzyme with rate-contributing proton-transfer steps. Methods Enzymol. 1982;87:732–752. doi: 10.1016/s0076-6879(82)87037-7. [DOI] [PubMed] [Google Scholar]
  21. Silverman D. N., Tu C., Chen X., Tanhauser S. M., Kresge A. J., Laipis P. J. Rate-equilibria relationships in intramolecular proton transfer in human carbonic anhydrase III. Biochemistry. 1993 Oct 12;32(40):10757–10762. doi: 10.1021/bi00091a029. [DOI] [PubMed] [Google Scholar]
  22. Simonsson I., Lindskog S. The interaction of sulfate with carbonic anhydrase. Eur J Biochem. 1982 Mar;123(1):29–36. doi: 10.1111/j.1432-1033.1982.tb06494.x. [DOI] [PubMed] [Google Scholar]
  23. Steiner H., Jonsson B. H., Lindskog S. The catalytic mechanism of carbonic anhydrase. Hydrogen-isotope effects on the kinetic parameters of the human C isoenzyme. Eur J Biochem. 1975 Nov 1;59(1):253–259. doi: 10.1111/j.1432-1033.1975.tb02449.x. [DOI] [PubMed] [Google Scholar]
  24. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  25. Tanhauser S. M., Jewell D. A., Tu C. K., Silverman D. N., Laipis P. J. A T7 expression vector optimized for site-directed mutagenesis using oligodeoxyribonucleotide cassettes. Gene. 1992 Aug 1;117(1):113–117. doi: 10.1016/0378-1119(92)90498-e. [DOI] [PubMed] [Google Scholar]
  26. Tashian R. E. The carbonic anhydrases: widening perspectives on their evolution, expression and function. Bioessays. 1989 Jun;10(6):186–192. doi: 10.1002/bies.950100603. [DOI] [PubMed] [Google Scholar]
  27. Tu C. K., Silverman D. N., Forsman C., Jonsson B. H., Lindskog S. Role of histidine 64 in the catalytic mechanism of human carbonic anhydrase II studied with a site-specific mutant. Biochemistry. 1989 Sep 19;28(19):7913–7918. doi: 10.1021/bi00445a054. [DOI] [PubMed] [Google Scholar]
  28. Tu C. K., Thomas H. G., Wynns G. C., Silverman D. N. Hydrolysis of 4-nitrophenyl acetate catalyzed by carbonic anhydrase III from bovine skeletal muscle. J Biol Chem. 1986 Aug 5;261(22):10100–10103. [PubMed] [Google Scholar]
  29. Tu C., Chen X., Ren X., LoGrasso P. V., Jewell D. A., Laipis P. J., Silverman D. N. Interactions of active-site residues and catalytic activity of human carbonic anhydrase III. J Biol Chem. 1994 Sep 16;269(37):23002–23006. [PubMed] [Google Scholar]
  30. Venkatasubban K. S., Silverman D. N. Carbon dioxide hydration activity of carbonic anhydrase in mixtures of water and deuterium oxide. Biochemistry. 1980 Oct 28;19(22):4984–4989. doi: 10.1021/bi00563a008. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES