Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jun;74(6):3198–3210. doi: 10.1016/S0006-3495(98)78026-9

New sterically stabilized vesicles based on nonionic surfactant, cholesterol, and poly(ethylene glycol)-cholesterol conjugates.

S Beugin 1, K Edwards 1, G Karlsson 1, M Ollivon 1, S Lesieur 1
PMCID: PMC1299660  PMID: 9635773

Abstract

Monomethoxypoly(ethylene glycol) cholesteryl carbonates (M-PEG-Chol) with polymer chain molecular weights of 1000 (M-PEG1000-Chol) and 2000 (M-PEG2000-Chol) have been newly synthesized and characterized. Their aggregation behavior in mixture with diglycerol hexadecyl ether (C16G2) and cholesterol has been examined by cryotransmission electron microscopy, high-performance gel exclusion chromatography, and quasielastic light scattering. Nonaggregated, stable, unilamellar vesicles were obtained at low polymer levels with optimal shape and size homogeneity at cholesteryl conjugate/ lipids ratios of 10 mol% M-PEG1000-Chol or 5 mol% M-PEG2000-Chol, corresponding to the theoretically predicted brush conformational state of the PEG chains. At 20 mol% M-PEG1000-Chol or 10 mol% M-PEG2000-Chol, the saturation threshold of the C16G2/cholesterol membrane in polymer is exceeded, and open disk-shaped aggregates are seen in coexistence with closed vesicles. Higher levels up to 30 mol% lead to the complete solubilization of the vesicles into disk-like structures of decreasing size with increasing PEG content. This study underlines the bivalent role of M-PEG-Chol derivatives: while behaving as solubilizing surfactants, they provide an efficient steric barrier, preventing the vesicles from aggregation and fusion over a period of at least 2 weeks.

Full Text

The Full Text of this article is available as a PDF (418.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen T. M., Hansen C., Martin F., Redemann C., Yau-Young A. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta. 1991 Jul 1;1066(1):29–36. doi: 10.1016/0005-2736(91)90246-5. [DOI] [PubMed] [Google Scholar]
  2. Allen T. M. Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol Sci. 1994 Jul;15(7):215–220. doi: 10.1016/0165-6147(94)90314-x. [DOI] [PubMed] [Google Scholar]
  3. Azmin M. N., Florence A. T., Handjani-Vila R. M., Stuart J. F., Vanlerberghe G., Whittaker J. S. The effect of niosomes and polysorbate 80 on the metabolism and excretion of methotrexate in the mouse. J Microencapsul. 1986 Apr-Jun;3(2):95–100. doi: 10.3109/02652048609031563. [DOI] [PubMed] [Google Scholar]
  4. Azmin M. N., Florence A. T., Handjani-Vila R. M., Stuart J. F., Vanlerberghe G., Whittaker J. S. The effect of non-ionic surfactant vesicle (niosome) entrapment on the absorption and distribution of methotrexate in mice. J Pharm Pharmacol. 1985 Apr;37(4):237–242. doi: 10.1111/j.2042-7158.1985.tb05051.x. [DOI] [PubMed] [Google Scholar]
  5. Baillie A. J., Coombs G. H., Dolan T. F., Laurie J. Non-ionic surfactant vesicles, niosomes, as a delivery system for the anti-leishmanial drug, sodium stibogluconate. J Pharm Pharmacol. 1986 Jul;38(7):502–505. doi: 10.1111/j.2042-7158.1986.tb04623.x. [DOI] [PubMed] [Google Scholar]
  6. Bedu-Addo F. K., Tang P., Xu Y., Huang L. Effects of polyethyleneglycol chain length and phospholipid acyl chain composition on the interaction of polyethyleneglycol-phospholipid conjugates with phospholipid: implications in liposomal drug delivery. Pharm Res. 1996 May;13(5):710–717. doi: 10.1023/a:1016091314940. [DOI] [PubMed] [Google Scholar]
  7. Bedu-Addo F. K., Tang P., Xu Y., Huang L. Interaction of polyethyleneglycol-phospholipid conjugates with cholesterol-phosphatidylcholine mixtures: sterically stabilized liposome formulations. Pharm Res. 1996 May;13(5):718–724. doi: 10.1023/a:1016043431778. [DOI] [PubMed] [Google Scholar]
  8. Bellare J. R., Davis H. T., Scriven L. E., Talmon Y. Controlled environment vitrification system: an improved sample preparation technique. J Electron Microsc Tech. 1988 Sep;10(1):87–111. doi: 10.1002/jemt.1060100111. [DOI] [PubMed] [Google Scholar]
  9. Blume G., Cevc G., Crommelin M. D., Bakker-Woudenberg I. A., Kluft C., Storm G. Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta. 1993 Jun 18;1149(1):180–184. doi: 10.1016/0005-2736(93)90039-3. [DOI] [PubMed] [Google Scholar]
  10. Carter K. C., Baillie A. J., Alexander J., Dolan T. F. The therapeutic effect of sodium stibogluconate in BALB/c mice infected with Leishmania donovani is organ-dependent. J Pharm Pharmacol. 1988 May;40(5):370–373. doi: 10.1111/j.2042-7158.1988.tb05271.x. [DOI] [PubMed] [Google Scholar]
  11. Dubochet J., Adrian M., Chang J. J., Homo J. C., Lepault J., McDowall A. W., Schultz P. Cryo-electron microscopy of vitrified specimens. Q Rev Biophys. 1988 May;21(2):129–228. doi: 10.1017/s0033583500004297. [DOI] [PubMed] [Google Scholar]
  12. Edwards K., Johnsson M., Karlsson G., Silvander M. Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes. Biophys J. 1997 Jul;73(1):258–266. doi: 10.1016/S0006-3495(97)78066-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hunter C. A., Dolan T. F., Coombs G. H., Baillie A. J. Vesicular systems (niosomes and liposomes) for delivery of sodium stibogluconate in experimental murine visceral leishmaniasis. J Pharm Pharmacol. 1988 Mar;40(3):161–165. doi: 10.1111/j.2042-7158.1988.tb05210.x. [DOI] [PubMed] [Google Scholar]
  14. Ishiwata H., Vertut-Doï A., Hirose T., Miyajima K. Physical-chemistry characteristics and biodistribution of poly(ethylene glycol)-coated liposomes using poly(oxyethylene) cholesteryl ether. Chem Pharm Bull (Tokyo) 1995 Jun;43(6):1005–1011. doi: 10.1248/cpb.43.1005. [DOI] [PubMed] [Google Scholar]
  15. Janzen J., Song X., Brooks D. E. Interfacial thickness of liposomes containing poly(ethylene glycol)-cholesterol from electrophoresis. Biophys J. 1996 Jan;70(1):313–320. doi: 10.1016/S0006-3495(96)79572-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kenworthy A. K., Hristova K., Needham D., McIntosh T. J. Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol). Biophys J. 1995 May;68(5):1921–1936. doi: 10.1016/S0006-3495(95)80369-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kenworthy A. K., Simon S. A., McIntosh T. J. Structure and phase behavior of lipid suspensions containing phospholipids with covalently attached poly(ethylene glycol). Biophys J. 1995 May;68(5):1903–1920. doi: 10.1016/S0006-3495(95)80368-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kerr D. J., Rogerson A., Morrison G. J., Florence A. T., Kaye S. B. Antitumour activity and pharmacokinetics of niosome encapsulated adriamycin in monolayer, spheroid and xenograft. Br J Cancer. 1988 Oct;58(4):432–436. doi: 10.1038/bjc.1988.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kirpotin D., Hong K., Mullah N., Papahadjopoulos D., Zalipsky S. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett. 1996 Jun 17;388(2-3):115–118. doi: 10.1016/0014-5793(96)00521-2. [DOI] [PubMed] [Google Scholar]
  20. Kuhl T. L., Leckband D. E., Lasic D. D., Israelachvili J. N. Modulation of interaction forces between bilayers exposing short-chained ethylene oxide headgroups. Biophys J. 1994 May;66(5):1479–1488. doi: 10.1016/S0006-3495(94)80938-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lasic D. D. Doxorubicin in sterically stabilized liposomes. Nature. 1996 Apr 11;380(6574):561–562. doi: 10.1038/380561a0. [DOI] [PubMed] [Google Scholar]
  22. Mazer N. A., Benedek G. B., Carey M. C. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry. 1980 Feb 19;19(4):601–615. doi: 10.1021/bi00545a001. [DOI] [PubMed] [Google Scholar]
  23. Needham D., McIntosh T. J., Lasic D. D. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochim Biophys Acta. 1992 Jul 8;1108(1):40–48. doi: 10.1016/0005-2736(92)90112-y. [DOI] [PubMed] [Google Scholar]
  24. Oku N., Namba Y. Long-circulating liposomes. Crit Rev Ther Drug Carrier Syst. 1994;11(4):231–270. [PubMed] [Google Scholar]
  25. Ollivon M., Walter A., Blumenthal R. Sizing and separation of liposomes, biological vesicles, and viruses by high-performance liquid chromatography. Anal Biochem. 1986 Feb 1;152(2):262–274. doi: 10.1016/0003-2697(86)90408-2. [DOI] [PubMed] [Google Scholar]
  26. Rogerson A., Cummings J., Florence A. T. Adriamycin-loaded niosomes: drug entrapment, stability and release. J Microencapsul. 1987 Oct-Dec;4(4):321–328. doi: 10.3109/02652048709021824. [DOI] [PubMed] [Google Scholar]
  27. Rogerson A., Cummings J., Willmott N., Florence A. T. The distribution of doxorubicin in mice following administration in niosomes. J Pharm Pharmacol. 1988 May;40(5):337–342. doi: 10.1111/j.2042-7158.1988.tb05263.x. [DOI] [PubMed] [Google Scholar]
  28. Sankaram M. B., Thompson T. E. Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H nuclear magnetic resonance study. Biochemistry. 1990 Nov 27;29(47):10676–10684. doi: 10.1021/bi00499a015. [DOI] [PubMed] [Google Scholar]
  29. Seras M., Ollivon M., Edwards K., Lesieur S. Reconstitution of non-ionic monoalkyl amphiphile-cholesterol vesicles by dilution of lipids-octylglucoside mixed micelles. Chem Phys Lipids. 1993 Nov;66(1-2):93–109. doi: 10.1016/0009-3084(93)90035-2. [DOI] [PubMed] [Google Scholar]
  30. Shimada K., Miyagishima A., Sadzuka Y., Nozawa Y., Mochizuki Y., Ohshima H., Hirota S. Determination of the thickness of the fixed aqueous layer around polyethyleneglycol-coated liposomes. J Drug Target. 1995;3(4):283–289. doi: 10.3109/10611869509015957. [DOI] [PubMed] [Google Scholar]
  31. Uster P. S., Allen T. M., Daniel B. E., Mendez C. J., Newman M. S., Zhu G. Z. Insertion of poly(ethylene glycol) derivatized phospholipid into pre-formed liposomes results in prolonged in vivo circulation time. FEBS Lett. 1996 May 20;386(2-3):243–246. doi: 10.1016/0014-5793(96)00452-8. [DOI] [PubMed] [Google Scholar]
  32. Vertut-Doï A., Ishiwata H., Miyajima K. Binding and uptake of liposomes containing a poly(ethylene glycol) derivative of cholesterol (stealth liposomes) by the macrophage cell line J774: influence of PEG content and its molecular weight. Biochim Biophys Acta. 1996 Jan 12;1278(1):19–28. doi: 10.1016/0005-2736(95)00185-9. [DOI] [PubMed] [Google Scholar]
  33. Vinson P. K., Talmon Y., Walter A. Vesicle-micelle transition of phosphatidylcholine and octyl glucoside elucidated by cryo-transmission electron microscopy. Biophys J. 1989 Oct;56(4):669–681. doi: 10.1016/S0006-3495(89)82714-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wong M., Thompson T. E. Aggregation of dipalmitoylphosphatidylcholine vesicles. Biochemistry. 1982 Aug 17;21(17):4133–4139. doi: 10.1021/bi00260a033. [DOI] [PubMed] [Google Scholar]
  35. Woodle M. C., Collins L. R., Sponsler E., Kossovsky N., Papahadjopoulos D., Martin F. J. Sterically stabilized liposomes. Reduction in electrophoretic mobility but not electrostatic surface potential. Biophys J. 1992 Apr;61(4):902–910. doi: 10.1016/S0006-3495(92)81897-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Woodle M. C., Lasic D. D. Sterically stabilized liposomes. Biochim Biophys Acta. 1992 Aug 14;1113(2):171–199. doi: 10.1016/0304-4157(92)90038-c. [DOI] [PubMed] [Google Scholar]
  37. Woodle M. C. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem Phys Lipids. 1993 Sep;64(1-3):249–262. doi: 10.1016/0009-3084(93)90069-f. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES