Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):41–52. doi: 10.1016/S0006-3495(98)77493-4

Structure of the Ca2+ pump of sarcoplasmic reticulum: a view along the lipid bilayer at 9-A resolution.

H Ogawa 1, D L Stokes 1, H Sasabe 1, C Toyoshima 1
PMCID: PMC1299678  PMID: 9649366

Abstract

We have used multilamellar crystals of the ATP-driven calcium pump from sarcoplasmic reticulum to address the structural effects of calcium binding to the enzyme. They are stacks of disk-shaped two-dimensional crystals. A density map projected along the lipid bilayer was obtained at 9-A resolution by frozen-hydrated electron microscopy. Although only in projection, much more details of the structure were revealed than previously available, especially in the transmembrane region. Quantitative comparison was made with the model obtained from the tubular crystals of this enzyme formed in the absence of calcium. Unexpectedly large differences in conformation were found, particularly in the cytoplasmic domain.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A., Henderson R., Unwin P. N. Three-dimensional structure determination by electron microscopy of two-dimensional crystals. Prog Biophys Mol Biol. 1982;39(3):183–231. doi: 10.1016/0079-6107(83)90017-2. [DOI] [PubMed] [Google Scholar]
  2. Anderson K. W., Murphy A. J. Alterations in the structure of the ribose moiety of ATP reduce its effectiveness as a substrate for the sarcoplasmic reticulum ATPase. J Biol Chem. 1983 Dec 10;258(23):14276–14278. [PubMed] [Google Scholar]
  3. Aureliano M., Mdeira V. M. Interactions of vanadate oligomers with sarcoplasmic reticulum Ca(2+)-ATPase. Biochim Biophys Acta. 1994 Apr 28;1221(3):259–271. doi: 10.1016/0167-4889(94)90249-6. [DOI] [PubMed] [Google Scholar]
  4. Bigelow D. J., Inesi G. Contributions of chemical derivatization and spectroscopic studies to the characterization of the Ca2+ transport ATPase of sarcoplasmic reticulum. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):323–338. doi: 10.1016/0304-4157(92)90005-u. [DOI] [PubMed] [Google Scholar]
  5. Brandl C. J., Green N. M., Korczak B., MacLennan D. H. Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell. 1986 Feb 28;44(4):597–607. doi: 10.1016/0092-8674(86)90269-2. [DOI] [PubMed] [Google Scholar]
  6. Caspar D. L., Cohen C., Longley W. Tropomyosin: crystal structure, polymorphism and molecular interactions. J Mol Biol. 1969 Apr 14;41(1):87–107. doi: 10.1016/0022-2836(69)90128-4. [DOI] [PubMed] [Google Scholar]
  7. Champeil P., Büschlen-Boucly S., Bastide F., Gary-Bobo C. Sarcoplasmic reticulum ATPase. Spin labeling detection of ligand-induced changes in the relative reactivities of certain sulfhydryl groups. J Biol Chem. 1978 Feb 25;253(4):1179–1186. [PubMed] [Google Scholar]
  8. Chen L., Sumbilla C., Lewis D., Zhong L., Strock C., Kirtley M. E., Inesi G. Short and long range functions of amino acids in the transmembrane region of the sarcoplasmic reticulum ATPase. A mutational study. J Biol Chem. 1996 May 3;271(18):10745–10752. doi: 10.1074/jbc.271.18.10745. [DOI] [PubMed] [Google Scholar]
  9. Cheong G. W., Young H. S., Ogawa H., Toyoshima C., Stokes D. L. Lamellar stacking in three-dimensional crystals of Ca(2+)-ATPase from sarcoplasmic reticulum. Biophys J. 1996 Apr;70(4):1689–1699. doi: 10.1016/S0006-3495(96)79731-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Clarke D. M., Loo T. W., MacLennan D. H. Functional consequences of alterations to amino acids located in the nucleotide binding domain of the Ca2(+)-ATPase of sarcoplasmic reticulum. J Biol Chem. 1990 Dec 25;265(36):22223–22227. [PubMed] [Google Scholar]
  11. Coan C., Scales D. J., Murphy A. J. Oligovanadate binding to sarcoplasmic reticulum ATPase. Evidence for substrate analogue behavior. J Biol Chem. 1986 Aug 5;261(22):10394–10403. [PubMed] [Google Scholar]
  12. Coll R. J., Murphy A. J. Purification of the CaATPase of sarcoplasmic reticulum by affinity chromatography. J Biol Chem. 1984 Nov 25;259(22):14249–14254. [PubMed] [Google Scholar]
  13. Csermely P., Katopis C., Wallace B. A., Martonosi A. The E1----E2 transition of Ca2+-transporting ATPase in sarcoplasmic reticulum occurs without major changes in secondary structure. A circular-dichroism study. Biochem J. 1987 Feb 1;241(3):663–669. doi: 10.1042/bj2410663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Csermely P., Varga S., Martonosi A. Competition between decavanadate and fluorescein isothiocyanate on the Ca2+-ATPase of sarcoplasmic reticulum. Eur J Biochem. 1985 Aug 1;150(3):455–460. doi: 10.1111/j.1432-1033.1985.tb09043.x. [DOI] [PubMed] [Google Scholar]
  15. DeLong L. J., Blasie J. K. Effect of Ca2+ binding on the profile structure of the sarcoplasmic reticulum membrane using time-resolved x-ray diffraction. Biophys J. 1993 Jun;64(6):1750–1759. doi: 10.1016/S0006-3495(93)81546-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dux L., Martonosi A. Two-dimensional arrays of proteins in sarcoplasmic reticulum and purified Ca2+-ATPase vesicles treated with vanadate. J Biol Chem. 1983 Feb 25;258(4):2599–2603. [PubMed] [Google Scholar]
  17. Dux L., Pikula S., Mullner N., Martonosi A. Crystallization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1987 May 15;262(14):6439–6442. [PubMed] [Google Scholar]
  18. Dux L., Taylor K. A., Ting-Beall H. P., Martonosi A. Crystallization of the Ca2+-ATPase of sarcoplasmic reticulum by calcium and lanthanide ions. J Biol Chem. 1985 Sep 25;260(21):11730–11743. [PubMed] [Google Scholar]
  19. Girardet J. L., Dupont Y. Ellipticity changes of the sarcoplasmic reticulum Ca(2+)-ATPase induced by cation binding and phosphorylation. FEBS Lett. 1992 Jan 13;296(1):103–106. doi: 10.1016/0014-5793(92)80413-b. [DOI] [PubMed] [Google Scholar]
  20. Guillain F., Champeil P., Lacapère J. J., Gingold M. P. Stopped flow and rapid quenching measurement of the transient steps induced by calcium binding to sarcoplasmic reticulum adenosine triphosphatase. Competition with Ca2+-independent phosphorylation. J Biol Chem. 1981 Jun 25;256(12):6140–6147. [PubMed] [Google Scholar]
  21. Guillain F., Gingold M. P., Büschlen S., Champeil P. A direct fluorescence study of the transient steps induced by calcium binding to sarcoplasmic reticulum ATPase. J Biol Chem. 1980 Mar 10;255(5):2072–2076. [PubMed] [Google Scholar]
  22. Imamura Y., Saito K., Kawakita M. Conformational change of Ca2+,Mg2+-adenosine triphosphatase of sarcoplasmic reticulum upon binding of Ca2+ and adenyl-5'-yl-imidodiphosphate as detected by trypsin sensitivity analysis. J Biochem. 1984 May;95(5):1305–1313. doi: 10.1093/oxfordjournals.jbchem.a134736. [DOI] [PubMed] [Google Scholar]
  23. Inesi G. Teaching active transport at the turn of the twenty-first century: recent discoveries and conceptual changes. Biophys J. 1994 Mar;66(3 Pt 1):554–560. doi: 10.1016/s0006-3495(94)80872-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Juul B., Turc H., Durand M. L., Gomez de Gracia A., Denoroy L., Møller J. V., Champeil P., le Maire M. Do transmembrane segments in proteolyzed sarcoplasmic reticulum Ca(2+)-ATPase retain their functional Ca2+ binding properties after removal of cytoplasmic fragments by proteinase K? J Biol Chem. 1995 Aug 25;270(34):20123–20134. doi: 10.1074/jbc.270.34.20123. [DOI] [PubMed] [Google Scholar]
  25. MacLennan D. H., Brandl C. J., Korczak B., Green N. M. Amino-acid sequence of a Ca2+ + Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature. 1985 Aug 22;316(6030):696–700. doi: 10.1038/316696a0. [DOI] [PubMed] [Google Scholar]
  26. Martonosi A. N. The structure and interactions of Ca(2+)-ATPase. Biosci Rep. 1995 Oct;15(5):263–281. doi: 10.1007/BF01788359. [DOI] [PubMed] [Google Scholar]
  27. Møller J. V., Juul B., le Maire M. Structural organization, ion transport, and energy transduction of P-type ATPases. Biochim Biophys Acta. 1996 May 6;1286(1):1–51. doi: 10.1016/0304-4157(95)00017-8. [DOI] [PubMed] [Google Scholar]
  28. Nakamoto R. K., Inesi G. Retention of ellipticity between enzymatic states of the Ca2+-ATPase of sarcoplasmic reticulum. FEBS Lett. 1986 Jan 6;194(2):258–262. doi: 10.1016/0014-5793(86)80096-5. [DOI] [PubMed] [Google Scholar]
  29. Pick U., Karlish S. J. Indications for an oligomeric structure and for conformational changes in sarcoplasmic reticulum Ca2+-ATPase labelled selectively with fluorescein. Biochim Biophys Acta. 1980 Nov 20;626(1):255–261. doi: 10.1016/0005-2795(80)90216-0. [DOI] [PubMed] [Google Scholar]
  30. Pick U., Karlish S. J. Regulation of the conformation transition in the Ca-ATPase from sarcoplasmic reticulum by pH, temperature, and calcium ions. J Biol Chem. 1982 Jun 10;257(11):6120–6126. [PubMed] [Google Scholar]
  31. Pick U. The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum. J Biol Chem. 1982 Jun 10;257(11):6111–6119. [PubMed] [Google Scholar]
  32. Pikula S., Mullner N., Dux L., Martonosi A. Stabilization and crystallization of Ca2+-ATPase in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1988 Apr 15;263(11):5277–5286. [PubMed] [Google Scholar]
  33. Rice W. J., MacLennan D. H. Scanning mutagenesis reveals a similar pattern of mutation sensitivity in transmembrane sequences M4, M5, and M6, but not in M8, of the Ca2+-ATPase of sarcoplasmic reticulum (SERCA1a). J Biol Chem. 1996 Dec 6;271(49):31412–31419. doi: 10.1074/jbc.271.49.31412. [DOI] [PubMed] [Google Scholar]
  34. Ross D. C., McIntosh D. B. Intramolecular cross-linking at the active site of the Ca2+-ATPase of sarcoplasmic reticulum. High and low affinity nucleotide binding and evidence of active site closure in E2-P. J Biol Chem. 1987 Sep 25;262(27):12977–12983. [PubMed] [Google Scholar]
  35. Schertler G. F., Villa C., Henderson R. Projection structure of rhodopsin. Nature. 1993 Apr 22;362(6422):770–772. doi: 10.1038/362770a0. [DOI] [PubMed] [Google Scholar]
  36. Shi D., Hsiung H. H., Pace R. C., Stokes D. L. Preparation and analysis of large, flat crystals of Ca(2+)-ATPase for electron crystallography. Biophys J. 1995 Mar;68(3):1152–1162. doi: 10.1016/S0006-3495(95)80291-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stokes D. L., Green N. M. Structure of CaATPase: electron microscopy of frozen-hydrated crystals at 6 A resolution in projection. J Mol Biol. 1990 Jun 5;213(3):529–538. doi: 10.1016/s0022-2836(05)80213-x. [DOI] [PubMed] [Google Scholar]
  38. Stokes D. L., Green N. M. Three-dimensional crystals of CaATPase from sarcoplasmic reticulum. Symmetry and molecular packing. Biophys J. 1990 Jan;57(1):1–14. doi: 10.1016/S0006-3495(90)82501-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stokes D. L., Lacapère J. J. Conformation of Ca(2+)-ATPase in two crystal forms. Effects of Ca2+, thapsigargin, adenosine 5'-(beta, gamma-methylene)triphosphate), and chromium(III)-ATP on crystallization. J Biol Chem. 1994 Apr 15;269(15):11606–11613. [PubMed] [Google Scholar]
  40. Taylor K. A., Mullner N., Pikula S., Dux L., Peracchia C., Varga S., Martonosi A. Electron microscope observations on Ca2+-ATPase microcrystals in detergent-solubilized sarcoplasmic reticulum. J Biol Chem. 1988 Apr 15;263(11):5287–5294. [PubMed] [Google Scholar]
  41. Taylor W. R., Green N. M. The predicted secondary structures of the nucleotide-binding sites of six cation-transporting ATPases lead to a probable tertiary fold. Eur J Biochem. 1989 Jan 15;179(1):241–248. doi: 10.1111/j.1432-1033.1989.tb14547.x. [DOI] [PubMed] [Google Scholar]
  42. Toyoshima C., Sasabe H., Stokes D. L. Three-dimensional cryo-electron microscopy of the calcium ion pump in the sarcoplasmic reticulum membrane. Nature. 1993 Apr 1;362(6419):467–471. doi: 10.1038/362469a0. [DOI] [PubMed] [Google Scholar]
  43. Trotta E. E., de Meis L. Adenosine 5'-triphosphate-orthophosphate exchange catalyzed by the Ca2+-transport ATPase of brain. Activation by a small transmembrane Ca2+ gradient. J Biol Chem. 1978 Nov 10;253(21):7821–7825. [PubMed] [Google Scholar]
  44. Varga S., Csermely P., Martonosi A. The binding of vanadium (V) oligoanions to sarcoplasmic reticulum. Eur J Biochem. 1985 Apr 1;148(1):119–126. doi: 10.1111/j.1432-1033.1985.tb08815.x. [DOI] [PubMed] [Google Scholar]
  45. Watanabe T., Lewis D., Nakamoto R., Kurzmack M., Fronticelli C., Inesi G. Modulation of calcium binding in sarcoplasmic reticulum adenosinetriphosphatase. Biochemistry. 1981 Nov 10;20(23):6617–6625. doi: 10.1021/bi00526a015. [DOI] [PubMed] [Google Scholar]
  46. Yamada S., Ikemoto N. Reaction mechanism of calcium-ATPase of sarcoplasmic reticulum. Substrates for phosphorylation reaction and back reaction, and further resolution of phosphorylated intermediates. J Biol Chem. 1980 Apr 10;255(7):3108–3119. [PubMed] [Google Scholar]
  47. Yamamoto H., Imamura Y., Tagaya M., Fukui T., Kawakita M. Ca2(+)-dependent conformational change of the ATP-binding site of Ca2(+)-transporting ATPase of sarcoplasmic reticulum as revealed by an alteration of the target-site specificity of adenosine triphosphopyridoxal. J Biochem. 1989 Dec;106(6):1121–1125. doi: 10.1093/oxfordjournals.jbchem.a122976. [DOI] [PubMed] [Google Scholar]
  48. Yonekura K., Stokes D. L., Sasabe H., Toyoshima C. The ATP-binding site of Ca(2+)-ATPase revealed by electron image analysis. Biophys J. 1997 Mar;72(3):997–1005. doi: 10.1016/S0006-3495(97)78752-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES