Abstract
Effects of the macromolecular solute on the translational mobility of surrounding solvent water, and Na+ and Cl- ions are investigated by molecular dynamics (MD) simulation. Using MD trajectories of myoglobin and d(C5T5) . d(G5A5) DNA decamer of high quality and length, we determine the average diffusion coefficients for all solvent species as a function of distance from the closest solute atom. We examine solvent mobility in the directions parallel and perpendicular to the solute surface and in proximity to three different classes of solute atoms (oxygens, nitrogens, and carbons). The nature and the magnitude of the solute effects on water diffusion appear to be very similar for protein and DNA decamer. The overall diffusion rate at the interface is lower than in the bulk. The rate is higher than the average in the direction parallel to the solute surface, and lower in the direction normal to the surface, up to 15 A away from the solute. The rate is also lower in the solvation shells of the macromolecules, producing characteristic depressions in the radial profiles of the diffusion coefficient that can be correlated with peaks in the corresponding radial distribution functions. The magnitude of these depressions is small compared to the overall change in solvent mobility at the interface. Similar features are observed in the radial profiles of the diffusion coefficient of sodium and chlorine ions as well.
Full Text
The Full Text of this article is available as a PDF (103.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abseher R., Schreiber H., Steinhauser O. The influence of a protein on water dynamics in its vicinity investigated by molecular dynamics simulation. Proteins. 1996 Jul;25(3):366–378. doi: 10.1002/(SICI)1097-0134(199607)25:3<366::AID-PROT8>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
- Brooks C. L., 3rd, Karplus M. Solvent effects on protein motion and protein effects on solvent motion. Dynamics of the active site region of lysozyme. J Mol Biol. 1989 Jul 5;208(1):159–181. doi: 10.1016/0022-2836(89)90093-4. [DOI] [PubMed] [Google Scholar]
- Brunne R. M., Liepinsh E., Otting G., Wüthrich K., van Gunsteren W. F. Hydration of proteins. A comparison of experimental residence times of water molecules solvating the bovine pancreatic trypsin inhibitor with theoretical model calculations. J Mol Biol. 1993 Jun 20;231(4):1040–1048. doi: 10.1006/jmbi.1993.1350. [DOI] [PubMed] [Google Scholar]
- Burling F. T., Weis W. I., Flaherty K. M., Brünger A. T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases. Science. 1996 Jan 5;271(5245):72–77. doi: 10.1126/science.271.5245.72. [DOI] [PubMed] [Google Scholar]
- Chiu S. W., Clark M., Balaji V., Subramaniam S., Scott H. L., Jakobsson E. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane. Biophys J. 1995 Oct;69(4):1230–1245. doi: 10.1016/S0006-3495(95)80005-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honig C. R., Reddy Y. S. Calcium, tropomyosin, and actomyosin as controls of calcium binding by troponin. Recent Adv Stud Cardiac Struct Metab. 1975;8:233–240. [PubMed] [Google Scholar]
- Jiang J. S., Brünger A. T. Protein hydration observed by X-ray diffraction. Solvation properties of penicillopepsin and neuraminidase crystal structures. J Mol Biol. 1994 Oct 14;243(1):100–115. doi: 10.1006/jmbi.1994.1633. [DOI] [PubMed] [Google Scholar]
- Komeiji Y., Uebayasi M., Someya J., Yamato I. A molecular dynamics study of solvent behavior around a protein. Proteins. 1993 Jul;16(3):268–277. doi: 10.1002/prot.340160305. [DOI] [PubMed] [Google Scholar]
- Levitt M., Sharon R. Accurate simulation of protein dynamics in solution. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7557–7561. doi: 10.1073/pnas.85.20.7557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lounnas V., Pettitt B. M., Phillips G. N., Jr A global model of the protein-solvent interface. Biophys J. 1994 Mar;66(3 Pt 1):601–614. doi: 10.1016/s0006-3495(94)80835-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mezei M., Beveridge D. L. Structural chemistry of biomolecular hydration via computer simulation: the proximity criterion. Methods Enzymol. 1986;127:21–47. doi: 10.1016/0076-6879(86)27005-6. [DOI] [PubMed] [Google Scholar]
- Norin M., Haeffner F., Hult K., Edholm O. Molecular dynamics simulations of an enzyme surrounded by vacuum, water, or a hydrophobic solvent. Biophys J. 1994 Aug;67(2):548–559. doi: 10.1016/S0006-3495(94)80515-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips G. N., Jr, Pettitt B. M. Structure and dynamics of the water around myoglobin. Protein Sci. 1995 Feb;4(2):149–158. doi: 10.1002/pro.5560040202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quillin M. L., Arduini R. M., Olson J. S., Phillips G. N., Jr High-resolution crystal structures of distal histidine mutants of sperm whale myoglobin. J Mol Biol. 1993 Nov 5;234(1):140–155. doi: 10.1006/jmbi.1993.1569. [DOI] [PubMed] [Google Scholar]
- Roux B., Prod'hom B., Karplus M. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy. Biophys J. 1995 Mar;68(3):876–892. doi: 10.1016/S0006-3495(95)80264-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teeter M. M. Water-protein interactions: theory and experiment. Annu Rev Biophys Biophys Chem. 1991;20:577–600. doi: 10.1146/annurev.bb.20.060191.003045. [DOI] [PubMed] [Google Scholar]