Abstract
We investigated bursting behavior in rodent trigeminal neurons. The essential mechanisms operating in the biological systems were determined based on testable predictions of mathematical models. Bursting activity in trigeminal motoneurons is consistent with a traditional mechanism employing a region of negative slope resistance in the steady-state current-voltage relationship (Smith, T. G. 1975. Nature. 253:450-452). However, the bursting dynamics of trigeminal interneurons is inconsistent with the traditional mechanisms, and is far more effectively explained by a new model of bursting that exploits the unique stability properties associated with spike threshold (Baer, S. M., T. Erneux, and J. Rinzel. 1989. SIAM J. Appl. Math. 49:55-71).
Full Text
The Full Text of this article is available as a PDF (162.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashcroft F. M., Rorsman P. Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol. 1989;54(2):87–143. doi: 10.1016/0079-6107(89)90013-8. [DOI] [PubMed] [Google Scholar]
- Atwater I., Dawson C. M., Scott A., Eddlestone G., Rojas E. The nature of the oscillatory behaviour in electrical activity from pancreatic beta-cell. Horm Metab Res Suppl. 1980;Suppl 10:100–107. [PubMed] [Google Scholar]
- Av-Ron E., Parnas H., Segel L. A. A basic biophysical model for bursting neurons. Biol Cybern. 1993;69(1):87–95. doi: 10.1007/BF00201411. [DOI] [PubMed] [Google Scholar]
- Bertram R., Butte M. J., Kiemel T., Sherman A. Topological and phenomenological classification of bursting oscillations. Bull Math Biol. 1995 May;57(3):413–439. doi: 10.1007/BF02460633. [DOI] [PubMed] [Google Scholar]
- Butera R. J., Jr, Clark J. W., Jr, Byrne J. H. Dissection and reduction of a modeled bursting neuron. J Comput Neurosci. 1996 Sep;3(3):199–223. doi: 10.1007/BF00161132. [DOI] [PubMed] [Google Scholar]
- Canavier C. C., Baxter D. A., Clark J. W., Byrne J. H. Nonlinear dynamics in a model neuron provide a novel mechanism for transient synaptic inputs to produce long-term alterations of postsynaptic activity. J Neurophysiol. 1993 Jun;69(6):2252–2257. doi: 10.1152/jn.1993.69.6.2252. [DOI] [PubMed] [Google Scholar]
- Canavier C. C., Clark J. W., Byrne J. H. Simulation of the bursting activity of neuron R15 in Aplysia: role of ionic currents, calcium balance, and modulatory transmitters. J Neurophysiol. 1991 Dec;66(6):2107–2124. doi: 10.1152/jn.1991.66.6.2107. [DOI] [PubMed] [Google Scholar]
- Demir S. S., Butera R. J., Jr, DeFranceschi A. A., Clark J. W., Jr, Byrne J. H. Phase sensitivity and entrainment in a modeled bursting neuron. Biophys J. 1997 Feb;72(2 Pt 1):579–594. doi: 10.1016/s0006-3495(97)78697-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitzhugh R. Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys J. 1961 Jul;1(6):445–466. doi: 10.1016/s0006-3495(61)86902-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guckenheimer J., Harris-Warrick R., Peck J., Willms A. Bifurcation, bursting, and spike frequency adaptation. J Comput Neurosci. 1997 Jul;4(3):257–277. doi: 10.1023/a:1008871803040. [DOI] [PubMed] [Google Scholar]
- Hindmarsh J. L., Rose R. M. A model of neuronal bursting using three coupled first order differential equations. Proc R Soc Lond B Biol Sci. 1984 Mar 22;221(1222):87–102. doi: 10.1098/rspb.1984.0024. [DOI] [PubMed] [Google Scholar]
- Hindmarsh J. L., Rose R. M. A model of the nerve impulse using two first-order differential equations. Nature. 1982 Mar 11;296(5853):162–164. doi: 10.1038/296162a0. [DOI] [PubMed] [Google Scholar]
- Honerkamp J., Mutschler G., Seitz R. Coupling of a slow and a fast oscillator can generate bursting. Bull Math Biol. 1985;47(1):1–21. doi: 10.1007/BF02459643. [DOI] [PubMed] [Google Scholar]
- Li Y. X., Bertram R., Rinzel J. Modeling N-methyl-D-aspartate-induced bursting in dopamine neurons. Neuroscience. 1996 Mar;71(2):397–410. doi: 10.1016/0306-4522(95)00483-1. [DOI] [PubMed] [Google Scholar]
- Llinás R. R., Grace A. A., Yarom Y. In vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):897–901. doi: 10.1073/pnas.88.3.897. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marder E., Calabrese R. L. Principles of rhythmic motor pattern generation. Physiol Rev. 1996 Jul;76(3):687–717. doi: 10.1152/physrev.1996.76.3.687. [DOI] [PubMed] [Google Scholar]
- Pinault D., Deschênes M. Voltage-dependent 40-Hz oscillations in rat reticular thalamic neurons in vivo. Neuroscience. 1992 Nov;51(2):245–258. doi: 10.1016/0306-4522(92)90312-p. [DOI] [PubMed] [Google Scholar]
- Rinzel J., Lee Y. S. Dissection of a model for neuronal parabolic bursting. J Math Biol. 1987;25(6):653–675. doi: 10.1007/BF00275501. [DOI] [PubMed] [Google Scholar]
- Schwindt P. C., Crill W. E. Properties of a persistent inward current in normal and TEA-injected motoneurons. J Neurophysiol. 1980 Jun;43(6):1700–1724. doi: 10.1152/jn.1980.43.6.1700. [DOI] [PubMed] [Google Scholar]
- Smith T. G., Jr, Barker J. L., Gainer H. Requirements for bursting pacemaker potential activity in molluscan neurones. Nature. 1975 Feb 6;253(5491):450–452. doi: 10.1038/253450a0. [DOI] [PubMed] [Google Scholar]
- Steriade M., Timofeev I., Dürmüller N., Grenier F. Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30-40 Hz) spike bursts. J Neurophysiol. 1998 Jan;79(1):483–490. doi: 10.1152/jn.1998.79.1.483. [DOI] [PubMed] [Google Scholar]
- Wang X. J. Ionic basis for intrinsic 40 Hz neuronal oscillations. Neuroreport. 1993 Dec 13;5(3):221–224. doi: 10.1097/00001756-199312000-00008. [DOI] [PubMed] [Google Scholar]