Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):226–235. doi: 10.1016/S0006-3495(98)77509-5

Anion competition for a volume-regulated current.

I Levitan 1, S S Garber 1
PMCID: PMC1299694  PMID: 9649382

Abstract

We have examined whether the anionic amino acids, glutamate and aspartate, permeate through the same volume-regulated conductance permeant to Cl- ions. Cell swelling was initiated in response to establishing a whole-cell configuration in the presence of a hyposmotic gradient. Volume-regulated anion currents carried by Cl-, glutamate, or aspartate developed with similar time courses and showed similar voltage-dependent inactivation. Permeability ratios (Paa/PCl) calculated from measured reversal potentials were dependent on the mole fraction ratio (MFR) of the permeant anions ([aa]/([aa] + [Cl-])). MFR was varied from 0.00 to 0.97. As the fraction of amino acid increased, Paa/PCl decreased. Current amplitude was similarly dependent on MFR. These results show that the permeation of anionic amino acids and that of Cl- ions are not independent of each other, indicating that the ion channel underlying the volume-regulated conductance can be occupied by more than one ion at a time. Application of Eyring rate theory indicated that the major barrier to Cl- ion permeation is at the intracellular side of the membrane, and that the major barrier to amino acid permeation is at the extracellular side of the membrane. The interactions between these permeant ions may have a physiological modulatory role in volume regulation through a volume-regulated anion conductance.

Full Text

The Full Text of this article is available as a PDF (120.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banderali U., Roy G. Anion channels for amino acids in MDCK cells. Am J Physiol. 1992 Dec;263(6 Pt 1):C1200–C1207. doi: 10.1152/ajpcell.1992.263.6.C1200. [DOI] [PubMed] [Google Scholar]
  2. Barry P. H., Lynch J. W. Liquid junction potentials and small cell effects in patch-clamp analysis. J Membr Biol. 1991 Apr;121(2):101–117. doi: 10.1007/BF01870526. [DOI] [PubMed] [Google Scholar]
  3. Begenisich T. B., Cahalan M. D. Sodium channel permeation in squid axons. I: Reversal potential experiments. J Physiol. 1980 Oct;307:217–242. doi: 10.1113/jphysiol.1980.sp013432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chamberlin M. E., Strange K. Anisosmotic cell volume regulation: a comparative view. Am J Physiol. 1989 Aug;257(2 Pt 1):C159–C173. doi: 10.1152/ajpcell.1989.257.2.C159. [DOI] [PubMed] [Google Scholar]
  5. Deutsch C., Lee S. C. Cell volume regulation in lymphocytes. Ren Physiol Biochem. 1988 May-Oct;11(3-5):260–276. doi: 10.1159/000173166. [DOI] [PubMed] [Google Scholar]
  6. Duan D., Winter C., Cowley S., Hume J. R., Horowitz B. Molecular identification of a volume-regulated chloride channel. Nature. 1997 Nov 27;390(6658):417–421. doi: 10.1038/37151. [DOI] [PubMed] [Google Scholar]
  7. Eisenman G., Alvarez O. Structure and function of channels and channelogs as studied by computational chemistry. J Membr Biol. 1991 Jan;119(2):109–132. doi: 10.1007/BF01871411. [DOI] [PubMed] [Google Scholar]
  8. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  9. Haynes J. K., Goldstein L. Volume-regulatory amino acid transport in erythrocytes of the little skate, Raja erinacea. Am J Physiol. 1993 Jul;265(1 Pt 2):R173–R179. doi: 10.1152/ajpregu.1993.265.1.R173. [DOI] [PubMed] [Google Scholar]
  10. Hille B., Schwarz W. Potassium channels as multi-ion single-file pores. J Gen Physiol. 1978 Oct;72(4):409–442. doi: 10.1085/jgp.72.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoffmann E. K. Cell swelling and volume regulation. Can J Physiol Pharmacol. 1992;70 (Suppl):S310–S313. doi: 10.1139/y92-277. [DOI] [PubMed] [Google Scholar]
  12. Jackson P. S., Strange K. Volume-sensitive anion channels mediate swelling-activated inositol and taurine efflux. Am J Physiol. 1993 Dec;265(6 Pt 1):C1489–C1500. doi: 10.1152/ajpcell.1993.265.6.C1489. [DOI] [PubMed] [Google Scholar]
  13. Kimelberg H. K., Anderson E., Kettenmann H. Swelling-induced changes in electrophysiological properties of cultured astrocytes and oligodendrocytes. II. Whole-cell currents. Brain Res. 1990 Oct 8;529(1-2):262–268. doi: 10.1016/0006-8993(90)90836-z. [DOI] [PubMed] [Google Scholar]
  14. Kirk K., Ellory J. C., Young J. D. Transport of organic substrates via a volume-activated channel. J Biol Chem. 1992 Nov 25;267(33):23475–23478. [PubMed] [Google Scholar]
  15. Kirk K., Kirk J. Volume-regulatory taurine release from a human lung cancer cell line. Evidence for amino acid transport via a volume-activated chloride channel. FEBS Lett. 1993 Dec 20;336(1):153–158. doi: 10.1016/0014-5793(93)81630-i. [DOI] [PubMed] [Google Scholar]
  16. Law R. O. Amino acids as volume-regulatory osmolytes in mammalian cells. Comp Biochem Physiol A Comp Physiol. 1991;99(3):263–277. doi: 10.1016/0300-9629(91)90001-s. [DOI] [PubMed] [Google Scholar]
  17. Law R. O. Regulation of mammalian brain cell volume. J Exp Zool. 1994 Feb 1;268(2):90–96. doi: 10.1002/jez.1402680204. [DOI] [PubMed] [Google Scholar]
  18. Levitan I., Almonte C., Mollard P., Garber S. S. Modulation of a volume-regulated chloride current by F-actin. J Membr Biol. 1995 Oct;147(3):283–294. doi: 10.1007/BF00234526. [DOI] [PubMed] [Google Scholar]
  19. Levitan I., Garber S. S. Voltage-dependent inactivation of volume-regulated Cl- current in human T84 colonic and B-cell myeloma cell lines. Pflugers Arch. 1995 Dec;431(2):297–299. doi: 10.1007/BF00410203. [DOI] [PubMed] [Google Scholar]
  20. Lewis R. S., Ross P. E., Cahalan M. D. Chloride channels activated by osmotic stress in T lymphocytes. J Gen Physiol. 1993 Jun;101(6):801–826. doi: 10.1085/jgp.101.6.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Neher E. Correction for liquid junction potentials in patch clamp experiments. Methods Enzymol. 1992;207:123–131. doi: 10.1016/0076-6879(92)07008-c. [DOI] [PubMed] [Google Scholar]
  22. Pasantes-Morales H., Alavez S., Sánchez Olea R., Morán J. Contribution of organic and inorganic osmolytes to volume regulation in rat brain cells in culture. Neurochem Res. 1993 Apr;18(4):445–452. doi: 10.1007/BF00967248. [DOI] [PubMed] [Google Scholar]
  23. Pérez-Cornejo P., Begenisich T. The multi-ion nature of the pore in Shaker K+ channels. Biophys J. 1994 Jun;66(6):1929–1938. doi: 10.1016/S0006-3495(94)80986-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roy G. Amino acid current through anion channels in cultured human glial cells. J Membr Biol. 1995 Sep;147(1):35–44. doi: 10.1007/BF00235396. [DOI] [PubMed] [Google Scholar]
  25. Roy G., Banderali U. Channels for ions and amino acids in kidney cultured cells (MDCK) during volume regulation. J Exp Zool. 1994 Feb 1;268(2):121–126. doi: 10.1002/jez.1402680208. [DOI] [PubMed] [Google Scholar]
  26. Roy G., Malo C. Activation of amino acid diffusion by a volume increase in cultured kidney (MDCK) cells. J Membr Biol. 1992 Oct;130(1):83–90. doi: 10.1007/BF00233740. [DOI] [PubMed] [Google Scholar]
  27. Sanchez-Olea R., Morán J., Schousboe A., Pasantes-Morales H. Hyposmolarity-activated fluxes of taurine in astrocytes are mediated by diffusion. Neurosci Lett. 1991 Sep 16;130(2):233–236. doi: 10.1016/0304-3940(91)90404-h. [DOI] [PubMed] [Google Scholar]
  28. Solc C. K., Wine J. J. Swelling-induced and depolarization-induced C1-channels in normal and cystic fibrosis epithelial cells. Am J Physiol. 1991 Oct;261(4 Pt 1):C658–C674. doi: 10.1152/ajpcell.1991.261.4.C658. [DOI] [PubMed] [Google Scholar]
  29. Storck T., Schulte S., Hofmann K., Stoffel W. Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10955–10959. doi: 10.1073/pnas.89.22.10955. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES