Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):321–330. doi: 10.1016/S0006-3495(98)77516-2

Material property characteristics for lipid bilayers containing lysolipid.

D V Zhelev 1
PMCID: PMC1299701  PMID: 9649389

Abstract

The apparent area expansion modulus and tensile strength of egg phosphatidylcholine (EPC) membranes are measured in the presence of monooleoylphosphatidylcholine (MOPC). The apparent area expansion modulus decreases from 171 mN m-1 for pure EPC membrane to 82 mN m-1 for a membrane containing 30 mol % MOPC. This significant decrease of the apparent area expansion modulus is attributed to the change of the membrane area due to the tension-dependent exchange of MOPC between the bathing solution and the membrane. Similar to the apparent area expansion modulus, the tensile strength of the membrane decreases with the increase of the molar concentration of MOPC in the membrane. The tensile strength of pure EPC membrane is 9.4 mN m-1 whereas that for a membrane containing 30 mol % MOPC is only 1.8 mN m-1, and for a membrane containing 50 mol % MOPC it is even smaller, on the order of 0.07 mN m-1. The decrease of the tensile strength is coupled with a decrease of the work for membrane breakdown, which changes from 4.3 x 10(-2) kT for pure EPC membrane to 2 x 10(-6) kT for a membrane with 50 mol % MOPC. Overall, these results show that the decrease of the apparent area expansion modulus in the presence of exchangeable molecules is a fundamental property for all membranes and depends on the area occupied by these molecules. The method presented here provides a unique tool for measuring the area occupied by an exchangeable molecule in the bilayer membrane.

Full Text

The Full Text of this article is available as a PDF (102.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Evans E. A., Simon S. Mechanics of electrocompression of lipid bilayer membranes. Biophys J. 1975 Aug;15(8):850–852. doi: 10.1016/S0006-3495(75)85860-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Evans E, Rawicz W. Entropy-driven tension and bending elasticity in condensed-fluid membranes. Phys Rev Lett. 1990 Apr 23;64(17):2094–2097. doi: 10.1103/PhysRevLett.64.2094. [DOI] [PubMed] [Google Scholar]
  3. Golan D. E., Brown C. S., Cianci C. M., Furlong S. T., Caulfield J. P. Schistosomula of Schistosoma mansoni use lysophosphatidylcholine to lyse adherent human red blood cells and immobilize red cell membrane components. J Cell Biol. 1986 Sep;103(3):819–828. doi: 10.1083/jcb.103.3.819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hui S. W., Huang C. H. X-ray diffraction evidence for fully interdigitated bilayers of 1-stearoyllysophosphatidylcholine. Biochemistry. 1986 Mar 25;25(6):1330–1335. doi: 10.1021/bi00354a021. [DOI] [PubMed] [Google Scholar]
  5. Kwok R., Evans E. Thermoelasticity of large lecithin bilayer vesicles. Biophys J. 1981 Sep;35(3):637–652. doi: 10.1016/S0006-3495(81)84817-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. MacDonald R. C., Simon S. A. Lipid monolayer states and their relationships to bilayers. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4089–4093. doi: 10.1073/pnas.84.12.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mattai J., Shipley G. G. The kinetics of formation and structure of the low-temperature phase of 1-stearoyl-lysophosphatidylcholine. Biochim Biophys Acta. 1986 Jul 24;859(2):257–265. doi: 10.1016/0005-2736(86)90221-x. [DOI] [PubMed] [Google Scholar]
  8. McIntosh T. J., Advani S., Burton R. E., Zhelev D. V., Needham D., Simon S. A. Experimental tests for protrusion and undulation pressures in phospholipid bilayers. Biochemistry. 1995 Jul 11;34(27):8520–8532. doi: 10.1021/bi00027a002. [DOI] [PubMed] [Google Scholar]
  9. McIntosh T. J., Magid A. D., Simon S. A. Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes. Biochemistry. 1989 Jan 10;28(1):17–25. doi: 10.1021/bi00427a004. [DOI] [PubMed] [Google Scholar]
  10. McIntosh T. J., Simon S. A. Hydration force and bilayer deformation: a reevaluation. Biochemistry. 1986 Jul 15;25(14):4058–4066. doi: 10.1021/bi00362a011. [DOI] [PubMed] [Google Scholar]
  11. McIntosh T. J. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim Biophys Acta. 1978 Oct 19;513(1):43–58. doi: 10.1016/0005-2736(78)90110-4. [DOI] [PubMed] [Google Scholar]
  12. Needham D., Hochmuth R. M. Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. Biophys J. 1989 May;55(5):1001–1009. doi: 10.1016/S0006-3495(89)82898-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Needham D., Nunn R. S. Elastic deformation and failure of lipid bilayer membranes containing cholesterol. Biophys J. 1990 Oct;58(4):997–1009. doi: 10.1016/S0006-3495(90)82444-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Needham D., Stoicheva N., Zhelev D. V. Exchange of monooleoylphosphatidylcholine as monomer and micelle with membranes containing poly(ethylene glycol)-lipid. Biophys J. 1997 Nov;73(5):2615–2629. doi: 10.1016/S0006-3495(97)78291-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Needham D., Zhelev D. V. Lysolipid exchange with lipid vesicle membranes. Ann Biomed Eng. 1995 May-Jun;23(3):287–298. doi: 10.1007/BF02584429. [DOI] [PubMed] [Google Scholar]
  16. Parsegian V. A., Fuller N., Rand R. P. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750–2754. doi: 10.1073/pnas.76.6.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Simon S. A., McIntosh T. J. Depth of water penetration into lipid bilayers. Methods Enzymol. 1986;127:511–521. doi: 10.1016/0076-6879(86)27041-x. [DOI] [PubMed] [Google Scholar]
  18. Simon S. A., McIntosh T. J., Magid A. D., Needham D. Modulation of the interbilayer hydration pressure by the addition of dipoles at the hydrocarbon/water interface. Biophys J. 1992 Mar;61(3):786–799. doi: 10.1016/S0006-3495(92)81883-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tardieu A., Luzzati V., Reman F. C. Structure and polymorphism of the hydrocarbon chains of lipids: a study of lecithin-water phases. J Mol Biol. 1973 Apr 25;75(4):711–733. doi: 10.1016/0022-2836(73)90303-3. [DOI] [PubMed] [Google Scholar]
  20. Van Echteld C. J., De Kruijff B., Mandersloot J. G., De Gier J. Effects of lysophosphatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31P-NMR, electron microscopy and permeability studies. Biochim Biophys Acta. 1981 Dec 7;649(2):211–220. doi: 10.1016/0005-2736(81)90408-9. [DOI] [PubMed] [Google Scholar]
  21. Zhelev D. V. Exchange of monooleoylphosphatidylcholine with single egg phosphatidylcholine vesicle membranes. Biophys J. 1996 Jul;71(1):257–273. doi: 10.1016/S0006-3495(96)79222-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Zhelev D. V., Needham D., Hochmuth R. M. A novel micropipet method for measuring the bending modulus of vesicle membranes. Biophys J. 1994 Aug;67(2):720–727. doi: 10.1016/S0006-3495(94)80530-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES