Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):354–358. doi: 10.1016/S0006-3495(98)77519-8

Nonaxiality in infrared dichroic ratios of polytopic transmembrane proteins.

D Marsh 1
PMCID: PMC1299704  PMID: 9649392

Abstract

In polytopic alpha-helical transmembrane proteins, the distribution of amide vibrational transition moments can be nonaxial, if the helix axes are tilted relative to the symmetry axis of the helix bundle. The infrared dichroic ratios from oriented samples then contain nonaxial terms and, in the most general case, require a second-order parameter for the axis of the helix bundle. The extent of nonaxiality depends on the summation over the individual amide transition moments along the helix. Because this is strongly oscillatory, with a 3.6-residue periodicity, complete axial symmetry is not achieved rapidly on progressive summation. Expressions for the contributions of residual nonaxiality to the dichroic ratios are derived. A similar situation arises for oligomers of transmembrane beta-barrel proteins, e.g., the porin trimer. In this case, the extent of nonaxiality depends not only on the number of residues in the beta-barrel, but also on the tilt of the beta-strands relative to the barrel axis and the characteristic dimensions of a beta-sheet, which together determine the axial periodicity. The nonaxial contributions to the dichroic ratios of beta-barrel oligomers are also derived. Estimates are given of the likely size of the nonaxial contributions for the different alpha-helical and beta-sheet systems.

Full Text

The Full Text of this article is available as a PDF (88.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelsen P. H., Kaufman B. K., McElhaney R. N., Lewis R. N. The infrared dichroism of transmembrane helical polypeptides. Biophys J. 1995 Dec;69(6):2770–2781. doi: 10.1016/S0006-3495(95)80150-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Grigorieff N., Ceska T. A., Downing K. H., Baldwin J. M., Henderson R. Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol. 1996 Jun 14;259(3):393–421. doi: 10.1006/jmbi.1996.0328. [DOI] [PubMed] [Google Scholar]
  3. Marsh D. Dichroic ratios in polarized Fourier transform infrared for nonaxial symmetry of beta-sheet structures. Biophys J. 1997 Jun;72(6):2710–2718. doi: 10.1016/S0006-3495(97)78914-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Nabedryk E., Garavito R. M., Breton J. The orientation of beta-sheets in porin. A polarized Fourier transform infrared spectroscopic investigation. Biophys J. 1988 May;53(5):671–676. doi: 10.1016/S0006-3495(88)83148-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rodionova N. A., Tatulian S. A., Surrey T., Jähnig F., Tamm L. K. Characterization of two membrane-bound forms of OmpA. Biochemistry. 1995 Feb 14;34(6):1921–1929. doi: 10.1021/bi00006a013. [DOI] [PubMed] [Google Scholar]
  6. Rothschild K. J., Clark N. A. Polarized infrared spectroscopy of oriented purple membrane. Biophys J. 1979 Mar;25(3):473–487. doi: 10.1016/S0006-3495(79)85317-5. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES