Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):372–381. doi: 10.1016/S0006-3495(98)77521-6

Sequence-dependent dynamics of TATA-Box binding sites.

D Flatters 1, R Lavery 1
PMCID: PMC1299706  PMID: 9649394

Abstract

We have carried out two nanosecond-length molecular dynamics simulations on a DNA oligomer, d(GCGTAAAAAAAACGC)2, which contains a weak binding site for the TATA-box binding protein. An analysis of the resulting trajectories shows that this oligomer behaves differently from a related oligomer [d(GCGTATATAAAACGC)2] studied earlier using the same protocol (Flatters, D., M. Young, D. L. Beveridge, and R. Lavery. 1997. Conformational properties of the TATA-box binding sequence of DNA. J. Biomol. Struct. & Dyn. 14:757-765), and which contains a strong binding site for the same protein. The two basepair mutations that relate these oligomers lead to significant changes in time-averaged structure and in dynamic behavior, which extend over entire length of the oligomer and appear to be compatible with the experimentally observed decrease of binding and functional activity. These results suggest that molecular dynamics simulations, taking into account explicit solvent and counterions, and avoiding the truncation of electrostatic interactions, are a powerful tool for investigating the indirect aspects of protein-nucleic acid recognition.

Full Text

The Full Text of this article is available as a PDF (356.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burkhoff A. M., Tullius T. D. The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell. 1987 Mar 27;48(6):935–943. doi: 10.1016/0092-8674(87)90702-1. [DOI] [PubMed] [Google Scholar]
  2. Cheatham T. E., 3rd, Kollman P. A. Observation of the A-DNA to B-DNA transition during unrestrained molecular dynamics in aqueous solution. J Mol Biol. 1996 Jun 14;259(3):434–444. doi: 10.1006/jmbi.1996.0330. [DOI] [PubMed] [Google Scholar]
  3. Cluzel P., Lebrun A., Heller C., Lavery R., Viovy J. L., Chatenay D., Caron F. DNA: an extensible molecule. Science. 1996 Feb 9;271(5250):792–794. doi: 10.1126/science.271.5250.792. [DOI] [PubMed] [Google Scholar]
  4. Dickerson R. E., Drew H. R. Structure of a B-DNA dodecamer. II. Influence of base sequence on helix structure. J Mol Biol. 1981 Jul 15;149(4):761–786. doi: 10.1016/0022-2836(81)90357-0. [DOI] [PubMed] [Google Scholar]
  5. Duan Y., Wilkosz P., Crowley M., Rosenberg J. M. Molecular dynamics simulation study of DNA dodecamer d(CGCGAATTCGCG) in solution: conformation and hydration. J Mol Biol. 1997 Oct 3;272(4):553–572. doi: 10.1006/jmbi.1997.1247. [DOI] [PubMed] [Google Scholar]
  6. Flatters D., Young M., Beveridge D. L., Lavery R. Conformational properties of the TATA-box binding sequence of DNA. J Biomol Struct Dyn. 1997 Jun;14(6):757–765. doi: 10.1080/07391102.1997.10508178. [DOI] [PubMed] [Google Scholar]
  7. Goodsell D. S., Dickerson R. E. Bending and curvature calculations in B-DNA. Nucleic Acids Res. 1994 Dec 11;22(24):5497–5503. doi: 10.1093/nar/22.24.5497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorin A. A., Zhurkin V. B., Olson W. K. B-DNA twisting correlates with base-pair morphology. J Mol Biol. 1995 Mar 17;247(1):34–48. doi: 10.1006/jmbi.1994.0120. [DOI] [PubMed] [Google Scholar]
  9. Guzikevich-Guerstein G., Shakked Z. A novel form of the DNA double helix imposed on the TATA-box by the TATA-binding protein. Nat Struct Biol. 1996 Jan;3(1):32–37. doi: 10.1038/nsb0196-32. [DOI] [PubMed] [Google Scholar]
  10. Juo Z. S., Chiu T. K., Leiberman P. M., Baikalov I., Berk A. J., Dickerson R. E. How proteins recognize the TATA box. J Mol Biol. 1996 Aug 16;261(2):239–254. doi: 10.1006/jmbi.1996.0456. [DOI] [PubMed] [Google Scholar]
  11. Katahira M., Sugeta H., Kyogoku Y., Fujii S., Fujisawa R., Tomita K. One- and two-dimensional NMR studies on the conformation of DNA containing the oligo(dA)oligo(dT) tract. Nucleic Acids Res. 1988 Sep 12;16(17):8619–8632. doi: 10.1093/nar/16.17.8619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kim J. L., Burley S. K. 1.9 A resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nat Struct Biol. 1994 Sep;1(9):638–653. doi: 10.1038/nsb0994-638. [DOI] [PubMed] [Google Scholar]
  13. Kim J. L., Nikolov D. B., Burley S. K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature. 1993 Oct 7;365(6446):520–527. doi: 10.1038/365520a0. [DOI] [PubMed] [Google Scholar]
  14. Kim Y., Geiger J. H., Hahn S., Sigler P. B. Crystal structure of a yeast TBP/TATA-box complex. Nature. 1993 Oct 7;365(6446):512–520. doi: 10.1038/365512a0. [DOI] [PubMed] [Google Scholar]
  15. Lavery R., Sklenar H. Defining the structure of irregular nucleic acids: conventions and principles. J Biomol Struct Dyn. 1989 Feb;6(4):655–667. doi: 10.1080/07391102.1989.10507728. [DOI] [PubMed] [Google Scholar]
  16. Lebrun A., Lavery R. Modelling extreme stretching of DNA. Nucleic Acids Res. 1996 Jun 15;24(12):2260–2267. doi: 10.1093/nar/24.12.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lebrun A., Shakked Z., Lavery R. Local DNA stretching mimics the distortion caused by the TATA box-binding protein. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2993–2998. doi: 10.1073/pnas.94.7.2993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Leroy J. L., Charretier E., Kochoyan M., Guéron M. Evidence from base-pair kinetics for two types of adenine tract structures in solution: their relation to DNA curvature. Biochemistry. 1988 Dec 13;27(25):8894–8898. doi: 10.1021/bi00425a004. [DOI] [PubMed] [Google Scholar]
  19. Nadeau J. G., Crothers D. M. Structural basis for DNA bending. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2622–2626. doi: 10.1073/pnas.86.8.2622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Pastor N., Pardo L., Weinstein H. Does TATA matter? A structural exploration of the selectivity determinants in its complexes with TATA box-binding protein. Biophys J. 1997 Aug;73(2):640–652. doi: 10.1016/S0006-3495(97)78099-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Privé G. G., Heinemann U., Chandrasegaran S., Kan L. S., Kopka M. L., Dickerson R. E. Helix geometry, hydration, and G.A mismatch in a B-DNA decamer. Science. 1987 Oct 23;238(4826):498–504. doi: 10.1126/science.3310237. [DOI] [PubMed] [Google Scholar]
  22. Sanghani S. R., Zakrzewska K., Harvey S. C., Lavery R. Molecular modelling of (A4T4NN)n and (T4A4NN)n: sequence elements responsible for curvature. Nucleic Acids Res. 1996 May 1;24(9):1632–1637. doi: 10.1093/nar/24.9.1632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith S. B., Cui Y., Bustamante C. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 1996 Feb 9;271(5250):795–799. doi: 10.1126/science.271.5250.795. [DOI] [PubMed] [Google Scholar]
  24. Starr D. B., Hoopes B. C., Hawley D. K. DNA bending is an important component of site-specific recognition by the TATA binding protein. J Mol Biol. 1995 Jul 21;250(4):434–446. doi: 10.1006/jmbi.1995.0388. [DOI] [PubMed] [Google Scholar]
  25. Stofer E., Lavery R. Measuring the geometry of DNA grooves. Biopolymers. 1994 Mar;34(3):337–346. doi: 10.1002/bip.360340305. [DOI] [PubMed] [Google Scholar]
  26. Ulyanov N. B., James T. L. Statistical analysis of DNA duplex structural features. Methods Enzymol. 1995;261:90–120. doi: 10.1016/s0076-6879(95)61006-5. [DOI] [PubMed] [Google Scholar]
  27. Ulyanov N. B., Zhurkin V. B. Sequence-dependent anisotropic flexibility of B-DNA. A conformational study. J Biomol Struct Dyn. 1984 Oct;2(2):361–385. doi: 10.1080/07391102.1984.10507573. [DOI] [PubMed] [Google Scholar]
  28. Wobbe C. R., Struhl K. Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol Cell Biol. 1990 Aug;10(8):3859–3867. doi: 10.1128/mcb.10.8.3859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Young M. A., Ravishanker G., Beveridge D. L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997 Nov;73(5):2313–2336. doi: 10.1016/S0006-3495(97)78263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhurkin V. B., Lysov Y. P., Ivanov V. I. Anisotropic flexibility of DNA and the nucleosomal structure. Nucleic Acids Res. 1979 Mar;6(3):1081–1096. doi: 10.1093/nar/6.3.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES