Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):422–427. doi: 10.1016/s0006-3495(98)77529-0

A helix propensity scale based on experimental studies of peptides and proteins.

C N Pace 1, J M Scholtz 1
PMCID: PMC1299714  PMID: 9649402

Abstract

The average globular protein contains 30% alpha-helix, the most common type of secondary structure. Some amino acids occur more frequently in alpha-helices than others; this tendency is known as helix propensity. Here we derive a helix propensity scale for solvent-exposed residues in the middle positions of alpha-helices. The scale is based on measurements of helix propensity in 11 systems, including both proteins and peptides. Alanine has the highest helix propensity, and, excluding proline, glycine has the lowest, approximately 1 kcal/mol less favorable than alanine. Based on our analysis, the helix propensities of the amino acids are as follows (kcal/mol): Ala = 0, Leu = 0.21, Arg = 0.21, Met = 0.24, Lys = 0.26, Gln = 0.39, Glu = 0.40, Ile = 0.41, Trp = 0.49, Ser = 0.50, Tyr = 0. 53, Phe = 0.54, Val = 0.61, His = 0.61, Asn = 0.65, Thr = 0.66, Cys = 0.68, Asp = 0.69, and Gly = 1.

Full Text

The Full Text of this article is available as a PDF (49.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aurora R., Creamer T. P., Srinivasan R., Rose G. D. Local interactions in protein folding: lessons from the alpha-helix. J Biol Chem. 1997 Jan 17;272(3):1413–1416. doi: 10.1074/jbc.272.3.1413. [DOI] [PubMed] [Google Scholar]
  2. Avbelj F., Moult J. Role of electrostatic screening in determining protein main chain conformational preferences. Biochemistry. 1995 Jan 24;34(3):755–764. doi: 10.1021/bi00003a008. [DOI] [PubMed] [Google Scholar]
  3. Blaber M., Baase W. A., Gassner N., Matthews B. W. Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent. J Mol Biol. 1995 Feb 17;246(2):317–330. doi: 10.1006/jmbi.1994.0087. [DOI] [PubMed] [Google Scholar]
  4. Blaber M., Zhang X. J., Lindstrom J. D., Pepiot S. D., Baase W. A., Matthews B. W. Determination of alpha-helix propensity within the context of a folded protein. Sites 44 and 131 in bacteriophage T4 lysozyme. J Mol Biol. 1994 Jan 14;235(2):600–624. doi: 10.1006/jmbi.1994.1016. [DOI] [PubMed] [Google Scholar]
  5. Brown J. E., Klee W. A. Helix-coil transition of the isolated amino terminus of ribonuclease. Biochemistry. 1971 Feb 2;10(3):470–476. doi: 10.1021/bi00779a019. [DOI] [PubMed] [Google Scholar]
  6. Chakrabartty A., Baldwin R. L. Stability of alpha-helices. Adv Protein Chem. 1995;46:141–176. [PubMed] [Google Scholar]
  7. Chou P. Y., Fasman G. D. Conformational parameters for amino acids in helical, beta-sheet, and random coil regions calculated from proteins. Biochemistry. 1974 Jan 15;13(2):211–222. doi: 10.1021/bi00699a001. [DOI] [PubMed] [Google Scholar]
  8. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  9. Cook D. A. The relation between amino acid sequence and protein conformation. J Mol Biol. 1967 Oct 14;29(1):167–171. doi: 10.1016/0022-2836(67)90188-x. [DOI] [PubMed] [Google Scholar]
  10. Creamer T. P., Rose G. D. Alpha-helix-forming propensities in peptides and proteins. Proteins. 1994 Jun;19(2):85–97. doi: 10.1002/prot.340190202. [DOI] [PubMed] [Google Scholar]
  11. Creamer T. P., Srinivasan R., Rose G. D. Modeling unfolded states of proteins and peptides. II. Backbone solvent accessibility. Biochemistry. 1997 Mar 11;36(10):2832–2835. doi: 10.1021/bi962819o. [DOI] [PubMed] [Google Scholar]
  12. DAVIES D. R. A CORRELATION BETWEEN AMINO ACID COMPOSITION AND PROTEIN STRUCTURE. J Mol Biol. 1964 Aug;9:605–609. doi: 10.1016/s0022-2836(64)80232-1. [DOI] [PubMed] [Google Scholar]
  13. Defay T., Cohen F. E. Evaluation of current techniques for ab initio protein structure prediction. Proteins. 1995 Nov;23(3):431–445. doi: 10.1002/prot.340230317. [DOI] [PubMed] [Google Scholar]
  14. Doig A. J., Baldwin R. L. N- and C-capping preferences for all 20 amino acids in alpha-helical peptides. Protein Sci. 1995 Jul;4(7):1325–1336. doi: 10.1002/pro.5560040708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Doig A. J., MacArthur M. W., Stapley B. J., Thornton J. M. Structures of N-termini of helices in proteins. Protein Sci. 1997 Jan;6(1):147–155. doi: 10.1002/pro.5560060117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Doig A. J., Sternberg M. J. Side-chain conformational entropy in protein folding. Protein Sci. 1995 Nov;4(11):2247–2251. doi: 10.1002/pro.5560041101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Frishman D., Argos P. The future of protein secondary structure prediction accuracy. Fold Des. 1997;2(3):159–162. doi: 10.1016/S1359-0278(97)00022-9. [DOI] [PubMed] [Google Scholar]
  18. Guzzo A. V. The influence of amino-acid sequence on protein structure. Biophys J. 1965 Nov;5(6):809–822. doi: 10.1016/S0006-3495(65)86753-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hermans J., Anderson A. G., Yun R. H. Differential helix propensity of small apolar side chains studied by molecular dynamics simulations. Biochemistry. 1992 Jun 23;31(24):5646–5653. doi: 10.1021/bi00139a031. [DOI] [PubMed] [Google Scholar]
  20. Horovitz A., Matthews J. M., Fersht A. R. Alpha-helix stability in proteins. II. Factors that influence stability at an internal position. J Mol Biol. 1992 Sep 20;227(2):560–568. doi: 10.1016/0022-2836(92)90907-2. [DOI] [PubMed] [Google Scholar]
  21. Lovejoy B., Choe S., Cascio D., McRorie D. K., DeGrado W. F., Eisenberg D. Crystal structure of a synthetic triple-stranded alpha-helical bundle. Science. 1993 Feb 26;259(5099):1288–1293. doi: 10.1126/science.8446897. [DOI] [PubMed] [Google Scholar]
  22. Luque I., Mayorga O. L., Freire E. Structure-based thermodynamic scale of alpha-helix propensities in amino acids. Biochemistry. 1996 Oct 22;35(42):13681–13688. doi: 10.1021/bi961319s. [DOI] [PubMed] [Google Scholar]
  23. Muñoz V., Serrano L. Elucidating the folding problem of helical peptides using empirical parameters. II. Helix macrodipole effects and rational modification of the helical content of natural peptides. J Mol Biol. 1995 Jan 20;245(3):275–296. doi: 10.1006/jmbi.1994.0023. [DOI] [PubMed] [Google Scholar]
  24. Myers J. K., Pace C. N., Scholtz J. M. A direct comparison of helix propensity in proteins and peptides. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):2833–2837. doi: 10.1073/pnas.94.7.2833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Myers J. K., Pace C. N., Scholtz J. M. Helix propensities are identical in proteins and peptides. Biochemistry. 1997 Sep 9;36(36):10923–10929. doi: 10.1021/bi9707180. [DOI] [PubMed] [Google Scholar]
  26. O'Neil K. T., DeGrado W. F. A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. Science. 1990 Nov 2;250(4981):646–651. doi: 10.1126/science.2237415. [DOI] [PubMed] [Google Scholar]
  27. Park S. H., Shalongo W., Stellwagen E. Residue helix parameters obtained from dichroic analysis of peptides of defined sequence. Biochemistry. 1993 Jul 13;32(27):7048–7053. doi: 10.1021/bi00078a033. [DOI] [PubMed] [Google Scholar]
  28. Prothero J. W. Correlation between the distribution of amino acids and alpha helices. Biophys J. 1966 May;6(3):367–370. doi: 10.1016/S0006-3495(66)86662-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ptitsyn O. B. Statistical analysis of the distribution of amino acid residues among helical and non-helical regions in globular proteins. J Mol Biol. 1969 Jun 28;42(3):501–510. doi: 10.1016/0022-2836(69)90238-1. [DOI] [PubMed] [Google Scholar]
  30. Richardson J. S., Richardson D. C. Amino acid preferences for specific locations at the ends of alpha helices. Science. 1988 Jun 17;240(4859):1648–1652. doi: 10.1126/science.3381086. [DOI] [PubMed] [Google Scholar]
  31. Rohl C. A., Chakrabartty A., Baldwin R. L. Helix propagation and N-cap propensities of the amino acids measured in alanine-based peptides in 40 volume percent trifluoroethanol. Protein Sci. 1996 Dec;5(12):2623–2637. doi: 10.1002/pro.5560051225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Scholtz J. M., Marqusee S., Baldwin R. L., York E. J., Stewart J. M., Santoro M., Bolen D. W. Calorimetric determination of the enthalpy change for the alpha-helix to coil transition of an alanine peptide in water. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2854–2858. doi: 10.1073/pnas.88.7.2854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stickle D. F., Presta L. G., Dill K. A., Rose G. D. Hydrogen bonding in globular proteins. J Mol Biol. 1992 Aug 20;226(4):1143–1159. doi: 10.1016/0022-2836(92)91058-w. [DOI] [PubMed] [Google Scholar]
  34. Waterhous D. V., Johnson W. C., Jr Importance of environment in determining secondary structure in proteins. Biochemistry. 1994 Mar 1;33(8):2121–2128. doi: 10.1021/bi00174a019. [DOI] [PubMed] [Google Scholar]
  35. Williams R. W., Chang A., Juretić D., Loughran S. Secondary structure predictions and medium range interactions. Biochim Biophys Acta. 1987 Nov 26;916(2):200–204. doi: 10.1016/0167-4838(87)90109-9. [DOI] [PubMed] [Google Scholar]
  36. Yang A. S., Honig B. Free energy determinants of secondary structure formation: I. alpha-Helices. J Mol Biol. 1995 Sep 22;252(3):351–365. doi: 10.1006/jmbi.1995.0502. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES