Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):445–452. doi: 10.1016/S0006-3495(98)77532-0

High-resolution, high-pressure NMR studies of proteins.

J Jonas 1, L Ballard 1, D Nash 1
PMCID: PMC1299717  PMID: 9649405

Abstract

Advanced high-resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with high pressure capability, represents a powerful new tool in the study of proteins. This contribution is organized in the following way. First, the specialized instrumentation needed for high-pressure NMR experiments is discussed, with specific emphasis on the design features and performance characteristics of a high-sensitivity, high-resolution, variable-temperature NMR probe operating at 500 MHz and at pressures of up to 500 MPa. An overview of several recent studies using 1D and 2D high-resolution, high-pressure NMR spectroscopy to investigate the pressure-induced reversible unfolding and pressure-assisted cold denaturation of lysozyme, ribonuclease A, and ubiquitin is presented. Specifically, the relationship between the residual secondary structure of pressure-assisted, cold-denatured states and the structure of early folding intermediates is discussed.

Full Text

The Full Text of this article is available as a PDF (154.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
  2. Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballard L, Reiner C, Jonas J. High-Resolution NMR Probe for Experiments at High Pressures. J Magn Reson A. 1996 Nov;123(1):81–86. doi: 10.1006/jmra.1996.0216. [DOI] [PubMed] [Google Scholar]
  4. Briggs M. S., Roder H. Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2017–2021. doi: 10.1073/pnas.89.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buck M., Radford S. E., Dobson C. M. Amide hydrogen exchange in a highly denatured state. Hen egg-white lysozyme in urea. J Mol Biol. 1994 Apr 1;237(3):247–254. doi: 10.1006/jmbi.1994.1228. [DOI] [PubMed] [Google Scholar]
  6. Carter J. V., Knox D. G., Rosenberg A. Pressure effects on folded proteins in solution. Hydrogen exchange at elevated pressures. J Biol Chem. 1978 Mar 25;253(6):1947–1953. [PubMed] [Google Scholar]
  7. Di Stefano D. L., Wand A. J. Two-dimensional 1H NMR study of human ubiquitin: a main chain directed assignment and structure analysis. Biochemistry. 1987 Nov 17;26(23):7272–7281. doi: 10.1021/bi00397a012. [DOI] [PubMed] [Google Scholar]
  8. Fink A. L. Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct. 1995;24:495–522. doi: 10.1146/annurev.bb.24.060195.002431. [DOI] [PubMed] [Google Scholar]
  9. Gladwin S. T., Evans P. A. Structure of very early protein folding intermediates: new insights through a variant of hydrogen exchange labelling. Fold Des. 1996;1(6):407–417. doi: 10.1016/S1359-0278(96)00057-0. [DOI] [PubMed] [Google Scholar]
  10. Harding M. M., Williams D. H., Woolfson D. N. Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry. 1991 Mar 26;30(12):3120–3128. doi: 10.1021/bi00226a020. [DOI] [PubMed] [Google Scholar]
  11. Houry W. A., Scheraga H. A. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange. Biochemistry. 1996 Sep 10;35(36):11734–11746. doi: 10.1021/bi961085c. [DOI] [PubMed] [Google Scholar]
  12. Huang G. S., Oas T. G. Heat and cold denatured states of monomeric lambda repressor are thermodynamically and conformationally equivalent. Biochemistry. 1996 May 21;35(20):6173–6180. doi: 10.1021/bi960250l. [DOI] [PubMed] [Google Scholar]
  13. Jonas J., Jonas A. High-pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct. 1994;23:287–318. doi: 10.1146/annurev.bb.23.060194.001443. [DOI] [PubMed] [Google Scholar]
  14. Jonas J. Nuclear magnetic resonance at high pressure. Science. 1982 Jun 11;216(4551):1179–1184. doi: 10.1126/science.216.4551.1179. [DOI] [PubMed] [Google Scholar]
  15. Khorasanizadeh S., Peters I. D., Roder H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat Struct Biol. 1996 Feb;3(2):193–205. doi: 10.1038/nsb0296-193. [DOI] [PubMed] [Google Scholar]
  16. Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
  17. Konno T., Kataoka M., Kamatari Y., Kanaori K., Nosaka A., Akasaka K. Solution X-ray scattering analysis of cold- heat-, and urea-denatured states in a protein, Streptomyces subtilisin inhibitor. J Mol Biol. 1995 Aug 4;251(1):95–103. doi: 10.1006/jmbi.1995.0418. [DOI] [PubMed] [Google Scholar]
  18. Miranker A., Radford S. E., Karplus M., Dobson C. M. Demonstration by NMR of folding domains in lysozyme. Nature. 1991 Feb 14;349(6310):633–636. doi: 10.1038/349633a0. [DOI] [PubMed] [Google Scholar]
  19. Nash D. P., Jonas J. Structure of pressure-assisted cold denatured lysozyme and comparison with lysozyme folding intermediates. Biochemistry. 1997 Nov 25;36(47):14375–14383. doi: 10.1021/bi970881v. [DOI] [PubMed] [Google Scholar]
  20. Nash D. P., Jonas J. Structure of the pressure-assisted cold denatured state of ubiquitin. Biochem Biophys Res Commun. 1997 Sep 18;238(2):289–291. doi: 10.1006/bbrc.1997.7308. [DOI] [PubMed] [Google Scholar]
  21. Nash D., Lee B. S., Jonas J. Hydrogen-exchange kinetics in the cold denatured state of ribonuclease A. Biochim Biophys Acta. 1996 Sep 13;1297(1):40–48. doi: 10.1016/0167-4838(96)00085-4. [DOI] [PubMed] [Google Scholar]
  22. Pan Y., Briggs M. S. Hydrogen exchange in native and alcohol forms of ubiquitin. Biochemistry. 1992 Nov 24;31(46):11405–11412. doi: 10.1021/bi00161a019. [DOI] [PubMed] [Google Scholar]
  23. Ptitsyn O. B. Structures of folding intermediates. Curr Opin Struct Biol. 1995 Feb;5(1):74–78. doi: 10.1016/0959-440x(95)80011-o. [DOI] [PubMed] [Google Scholar]
  24. Radford S. E., Dobson C. M., Evans P. A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature. 1992 Jul 23;358(6384):302–307. doi: 10.1038/358302a0. [DOI] [PubMed] [Google Scholar]
  25. Redfield C., Dobson C. M. Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry. 1988 Jan 12;27(1):122–136. doi: 10.1021/bi00401a020. [DOI] [PubMed] [Google Scholar]
  26. Rico M., Santoro J., González C., Bruix M., Neira J. L., Nieto J. L., Herranz J. 3D structure of bovine pancreatic ribonuclease A in aqueous solution: an approach to tertiary structure determination from a small basis of 1H NMR NOE correlations. J Biomol NMR. 1991 Sep;1(3):283–298. doi: 10.1007/BF01875521. [DOI] [PubMed] [Google Scholar]
  27. Robertson A. D., Baldwin R. L. Hydrogen exchange in thermally denatured ribonuclease A. Biochemistry. 1991 Oct 15;30(41):9907–9914. doi: 10.1021/bi00105a014. [DOI] [PubMed] [Google Scholar]
  28. Udgaonkar J. B., Baldwin R. L. Early folding intermediate of ribonuclease A. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8197–8201. doi: 10.1073/pnas.87.21.8197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
  30. Wong K. B., Freund S. M., Fersht A. R. Cold denaturation of barstar: 1H, 15N and 13C NMR assignment and characterisation of residual structure. J Mol Biol. 1996 Jun 21;259(4):805–818. doi: 10.1006/jmbi.1996.0359. [DOI] [PubMed] [Google Scholar]
  31. Zhang J., Peng X., Jonas A., Jonas J. NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Biochemistry. 1995 Jul 11;34(27):8631–8641. doi: 10.1021/bi00027a012. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES