Abstract
Advanced high-resolution NMR spectroscopy, including two-dimensional NMR techniques, combined with high pressure capability, represents a powerful new tool in the study of proteins. This contribution is organized in the following way. First, the specialized instrumentation needed for high-pressure NMR experiments is discussed, with specific emphasis on the design features and performance characteristics of a high-sensitivity, high-resolution, variable-temperature NMR probe operating at 500 MHz and at pressures of up to 500 MPa. An overview of several recent studies using 1D and 2D high-resolution, high-pressure NMR spectroscopy to investigate the pressure-induced reversible unfolding and pressure-assisted cold denaturation of lysozyme, ribonuclease A, and ubiquitin is presented. Specifically, the relationship between the residual secondary structure of pressure-assisted, cold-denatured states and the structure of early folding intermediates is discussed.
Full Text
The Full Text of this article is available as a PDF (154.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anfinsen C. B. Principles that govern the folding of protein chains. Science. 1973 Jul 20;181(4096):223–230. doi: 10.1126/science.181.4096.223. [DOI] [PubMed] [Google Scholar]
- Bai Y., Milne J. S., Mayne L., Englander S. W. Primary structure effects on peptide group hydrogen exchange. Proteins. 1993 Sep;17(1):75–86. doi: 10.1002/prot.340170110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ballard L, Reiner C, Jonas J. High-Resolution NMR Probe for Experiments at High Pressures. J Magn Reson A. 1996 Nov;123(1):81–86. doi: 10.1006/jmra.1996.0216. [DOI] [PubMed] [Google Scholar]
- Briggs M. S., Roder H. Early hydrogen-bonding events in the folding reaction of ubiquitin. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2017–2021. doi: 10.1073/pnas.89.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buck M., Radford S. E., Dobson C. M. Amide hydrogen exchange in a highly denatured state. Hen egg-white lysozyme in urea. J Mol Biol. 1994 Apr 1;237(3):247–254. doi: 10.1006/jmbi.1994.1228. [DOI] [PubMed] [Google Scholar]
- Carter J. V., Knox D. G., Rosenberg A. Pressure effects on folded proteins in solution. Hydrogen exchange at elevated pressures. J Biol Chem. 1978 Mar 25;253(6):1947–1953. [PubMed] [Google Scholar]
- Di Stefano D. L., Wand A. J. Two-dimensional 1H NMR study of human ubiquitin: a main chain directed assignment and structure analysis. Biochemistry. 1987 Nov 17;26(23):7272–7281. doi: 10.1021/bi00397a012. [DOI] [PubMed] [Google Scholar]
- Fink A. L. Compact intermediate states in protein folding. Annu Rev Biophys Biomol Struct. 1995;24:495–522. doi: 10.1146/annurev.bb.24.060195.002431. [DOI] [PubMed] [Google Scholar]
- Gladwin S. T., Evans P. A. Structure of very early protein folding intermediates: new insights through a variant of hydrogen exchange labelling. Fold Des. 1996;1(6):407–417. doi: 10.1016/S1359-0278(96)00057-0. [DOI] [PubMed] [Google Scholar]
- Harding M. M., Williams D. H., Woolfson D. N. Characterization of a partially denatured state of a protein by two-dimensional NMR: reduction of the hydrophobic interactions in ubiquitin. Biochemistry. 1991 Mar 26;30(12):3120–3128. doi: 10.1021/bi00226a020. [DOI] [PubMed] [Google Scholar]
- Houry W. A., Scheraga H. A. Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange. Biochemistry. 1996 Sep 10;35(36):11734–11746. doi: 10.1021/bi961085c. [DOI] [PubMed] [Google Scholar]
- Huang G. S., Oas T. G. Heat and cold denatured states of monomeric lambda repressor are thermodynamically and conformationally equivalent. Biochemistry. 1996 May 21;35(20):6173–6180. doi: 10.1021/bi960250l. [DOI] [PubMed] [Google Scholar]
- Jonas J., Jonas A. High-pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct. 1994;23:287–318. doi: 10.1146/annurev.bb.23.060194.001443. [DOI] [PubMed] [Google Scholar]
- Jonas J. Nuclear magnetic resonance at high pressure. Science. 1982 Jun 11;216(4551):1179–1184. doi: 10.1126/science.216.4551.1179. [DOI] [PubMed] [Google Scholar]
- Khorasanizadeh S., Peters I. D., Roder H. Evidence for a three-state model of protein folding from kinetic analysis of ubiquitin variants with altered core residues. Nat Struct Biol. 1996 Feb;3(2):193–205. doi: 10.1038/nsb0296-193. [DOI] [PubMed] [Google Scholar]
- Kim P. S., Baldwin R. L. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990;59:631–660. doi: 10.1146/annurev.bi.59.070190.003215. [DOI] [PubMed] [Google Scholar]
- Konno T., Kataoka M., Kamatari Y., Kanaori K., Nosaka A., Akasaka K. Solution X-ray scattering analysis of cold- heat-, and urea-denatured states in a protein, Streptomyces subtilisin inhibitor. J Mol Biol. 1995 Aug 4;251(1):95–103. doi: 10.1006/jmbi.1995.0418. [DOI] [PubMed] [Google Scholar]
- Miranker A., Radford S. E., Karplus M., Dobson C. M. Demonstration by NMR of folding domains in lysozyme. Nature. 1991 Feb 14;349(6310):633–636. doi: 10.1038/349633a0. [DOI] [PubMed] [Google Scholar]
- Nash D. P., Jonas J. Structure of pressure-assisted cold denatured lysozyme and comparison with lysozyme folding intermediates. Biochemistry. 1997 Nov 25;36(47):14375–14383. doi: 10.1021/bi970881v. [DOI] [PubMed] [Google Scholar]
- Nash D. P., Jonas J. Structure of the pressure-assisted cold denatured state of ubiquitin. Biochem Biophys Res Commun. 1997 Sep 18;238(2):289–291. doi: 10.1006/bbrc.1997.7308. [DOI] [PubMed] [Google Scholar]
- Nash D., Lee B. S., Jonas J. Hydrogen-exchange kinetics in the cold denatured state of ribonuclease A. Biochim Biophys Acta. 1996 Sep 13;1297(1):40–48. doi: 10.1016/0167-4838(96)00085-4. [DOI] [PubMed] [Google Scholar]
- Pan Y., Briggs M. S. Hydrogen exchange in native and alcohol forms of ubiquitin. Biochemistry. 1992 Nov 24;31(46):11405–11412. doi: 10.1021/bi00161a019. [DOI] [PubMed] [Google Scholar]
- Ptitsyn O. B. Structures of folding intermediates. Curr Opin Struct Biol. 1995 Feb;5(1):74–78. doi: 10.1016/0959-440x(95)80011-o. [DOI] [PubMed] [Google Scholar]
- Radford S. E., Dobson C. M., Evans P. A. The folding of hen lysozyme involves partially structured intermediates and multiple pathways. Nature. 1992 Jul 23;358(6384):302–307. doi: 10.1038/358302a0. [DOI] [PubMed] [Google Scholar]
- Redfield C., Dobson C. M. Sequential 1H NMR assignments and secondary structure of hen egg white lysozyme in solution. Biochemistry. 1988 Jan 12;27(1):122–136. doi: 10.1021/bi00401a020. [DOI] [PubMed] [Google Scholar]
- Rico M., Santoro J., González C., Bruix M., Neira J. L., Nieto J. L., Herranz J. 3D structure of bovine pancreatic ribonuclease A in aqueous solution: an approach to tertiary structure determination from a small basis of 1H NMR NOE correlations. J Biomol NMR. 1991 Sep;1(3):283–298. doi: 10.1007/BF01875521. [DOI] [PubMed] [Google Scholar]
- Robertson A. D., Baldwin R. L. Hydrogen exchange in thermally denatured ribonuclease A. Biochemistry. 1991 Oct 15;30(41):9907–9914. doi: 10.1021/bi00105a014. [DOI] [PubMed] [Google Scholar]
- Udgaonkar J. B., Baldwin R. L. Early folding intermediate of ribonuclease A. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8197–8201. doi: 10.1073/pnas.87.21.8197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
- Wong K. B., Freund S. M., Fersht A. R. Cold denaturation of barstar: 1H, 15N and 13C NMR assignment and characterisation of residual structure. J Mol Biol. 1996 Jun 21;259(4):805–818. doi: 10.1006/jmbi.1996.0359. [DOI] [PubMed] [Google Scholar]
- Zhang J., Peng X., Jonas A., Jonas J. NMR study of the cold, heat, and pressure unfolding of ribonuclease A. Biochemistry. 1995 Jul 11;34(27):8631–8641. doi: 10.1021/bi00027a012. [DOI] [PubMed] [Google Scholar]