Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):453–462. doi: 10.1016/S0006-3495(98)77533-2

Reversible stalling of transcription elongation complexes by high pressure.

L Erijman 1, R M Clegg 1
PMCID: PMC1299718  PMID: 9649406

Abstract

We have investigated the effect of high hydrostatic pressure on the stability of RNA polymerase molecules during transcription. RNA polymerase molecules participating in stalled or active ternary transcribing complexes do not dissociate from the template DNA and nascent RNA at pressures up to 180 MPa. A lower limit for the free energy of stabilization of an elongating ternary complex relative to the quaternary structure of the free RNAP molecules is estimated to be 20 kcal/mol. The rate of elongation decreases at high pressure; transcription completely halts at sufficiently high pressure. The overall rate of elongation has an apparent activation volume (DeltaVdouble dagger) of 55-65 ml . mol-1 (at 35 degrees C). The pressure-stalled transcripts are stable and resume elongation at the prepressure rate upon decompression. The efficiency of termination decreases at the rho-independent terminator tR2 after the transcription reaction has been exposed to high pressure. This suggests that high pressure modifies the ternary complex such that termination is affected in a manner different from that of elongation. The solvent and temperature dependence of the pressure-induced inhibition show evidence for major conformational changes in the core polymerase enzyme during RNA synthesis. It is proposed that the inhibition of the elongation phase of the transcription reaction at elevated pressures is related to a reduction of the partial specific volume of the RNA polymerase molecule; under high pressure, the RNA polymerase molecule does not have the necessary structural flexibility required for the protein to translocate.

Full Text

The Full Text of this article is available as a PDF (122.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arndt K. M., Chamberlin M. J. RNA chain elongation by Escherichia coli RNA polymerase. Factors affecting the stability of elongating ternary complexes. J Mol Biol. 1990 May 5;213(1):79–108. doi: 10.1016/S0022-2836(05)80123-8. [DOI] [PubMed] [Google Scholar]
  2. Beabealashvilly R. S., Savotchkina L. P. RNA polymerase-DNA complexes. IV. Influences of the ionic strength on the integrity of the complexes. Biochim Biophys Acta. 1973 Feb 4;294(1):434–441. [PubMed] [Google Scholar]
  3. Chamberlin M. J. New models for the mechanism of transcription elongation and its regulation. Harvey Lect. 1992 1993;88:1–21. [PubMed] [Google Scholar]
  4. Cioni P., Strambini G. B. Pressure effects on protein flexibility monomeric proteins. J Mol Biol. 1994 Sep 23;242(3):291–301. doi: 10.1006/jmbi.1994.1579. [DOI] [PubMed] [Google Scholar]
  5. Cooper A. Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2740–2741. doi: 10.1073/pnas.73.8.2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Erie D. A., Yager T. D., von Hippel P. H. The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective. Annu Rev Biophys Biomol Struct. 1992;21:379–415. doi: 10.1146/annurev.bb.21.060192.002115. [DOI] [PubMed] [Google Scholar]
  7. Erijman L., Clegg R. M. Heterogeneity of E. coli RNA polymerase revealed by high pressure. J Mol Biol. 1995 Oct 20;253(2):259–265. doi: 10.1006/jmbi.1995.0550. [DOI] [PubMed] [Google Scholar]
  8. Fukuda R., Ishihama A. Subunits of RNA polymerase in function and structure; Maturation in vitro of core enzyme from Escherichia coli. J Mol Biol. 1974 Aug 15;87(3):523–540. doi: 10.1016/0022-2836(74)90102-8. [DOI] [PubMed] [Google Scholar]
  9. Gross M., Auerbach G., Jaenicke R. The catalytic activities of monomeric enzymes show complex pressure dependence. FEBS Lett. 1993 Apr 26;321(2-3):256–260. doi: 10.1016/0014-5793(93)80120-j. [DOI] [PubMed] [Google Scholar]
  10. Hawley S. A., MacLeod R. M. Pressure-temperature stability of DNA in neutral salt solutions. Biopolymers. 1974;13(7):1417–1426. doi: 10.1002/bip.1974.360130712. [DOI] [PubMed] [Google Scholar]
  11. Krummel B., Chamberlin M. J. Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes. J Mol Biol. 1992 May 20;225(2):239–250. doi: 10.1016/0022-2836(92)90918-a. [DOI] [PubMed] [Google Scholar]
  12. Liu B., Alberts B. M. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science. 1995 Feb 24;267(5201):1131–1137. doi: 10.1126/science.7855590. [DOI] [PubMed] [Google Scholar]
  13. Liu B., Wong M. L., Alberts B. A transcribing RNA polymerase molecule survives DNA replication without aborting its growing RNA chain. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10660–10664. doi: 10.1073/pnas.91.22.10660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Low P. S., Somero G. N. Activation volumes in enzymic catalysis: their sources and modification by low-molecular-weight solutes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3014–3018. doi: 10.1073/pnas.72.8.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Markovtsov V., Mustaev A., Goldfarb A. Protein-RNA interactions in the active center of transcription elongation complex. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3221–3226. doi: 10.1073/pnas.93.8.3221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Metzger W., Schickor P., Heumann H. A cinematographic view of Escherichia coli RNA polymerase translocation. EMBO J. 1989 Sep;8(9):2745–2754. doi: 10.1002/j.1460-2075.1989.tb08416.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Naito S., Ishihama A. Isolation and properties of the transcription complex of Escherichia coli RNA polymerase. Biochim Biophys Acta. 1975 Aug 6;402(1):88–104. doi: 10.1016/0005-2787(75)90373-1. [DOI] [PubMed] [Google Scholar]
  18. Neff N. F., Chamberlin M. J. Termination of transcription by Escherichia coli ribonucleic acid polymerase in vitro. Effect of altered reaction conditions and mutations in the enzyme protein on termination with T7 and T3 deoxyribonucleic acids. Biochemistry. 1980 Jun 24;19(13):3005–3015. doi: 10.1021/bi00554a027. [DOI] [PubMed] [Google Scholar]
  19. Nudler E., Goldfarb A., Kashlev M. Discontinuous mechanism of transcription elongation. Science. 1994 Aug 5;265(5173):793–796. doi: 10.1126/science.8047884. [DOI] [PubMed] [Google Scholar]
  20. Nudler E., Kashlev M., Nikiforov V., Goldfarb A. Coupling between transcription termination and RNA polymerase inchworming. Cell. 1995 May 5;81(3):351–357. doi: 10.1016/0092-8674(95)90388-7. [DOI] [PubMed] [Google Scholar]
  21. Reynolds R., Bermúdez-Cruz R. M., Chamberlin M. J. Parameters affecting transcription termination by Escherichia coli RNA polymerase. I. Analysis of 13 rho-independent terminators. J Mol Biol. 1992 Mar 5;224(1):31–51. doi: 10.1016/0022-2836(92)90574-4. [DOI] [PubMed] [Google Scholar]
  22. Rhodes G., Chamberlin M. J. Ribonucleic acid chain elongation by Escherichia coli ribonucleic acid polymerase. I. Isolation of ternary complexes and the kinetics of elongation. J Biol Chem. 1974 Oct 25;249(20):6675–6683. [PubMed] [Google Scholar]
  23. Richardson J. P. The binding of RNA polymerase to DNA. J Mol Biol. 1966 Oct 28;21(1):83–114. doi: 10.1016/0022-2836(66)90081-7. [DOI] [PubMed] [Google Scholar]
  24. Robinson C. R., Sligar S. G. Hydrostatic pressure reverses osmotic pressure effects on the specificity of EcoRI-DNA interactions. Biochemistry. 1994 Apr 5;33(13):3787–3793. doi: 10.1021/bi00179a001. [DOI] [PubMed] [Google Scholar]
  25. Roe J. H., Burgess R. R., Record M. T., Jr Temperature dependence of the rate constants of the Escherichia coli RNA polymerase-lambda PR promoter interaction. Assignment of the kinetic steps corresponding to protein conformational change and DNA opening. J Mol Biol. 1985 Aug 5;184(3):441–453. doi: 10.1016/0022-2836(85)90293-1. [DOI] [PubMed] [Google Scholar]
  26. Royer C. A., Chakerian A. E., Matthews K. S. Macromolecular binding equilibria in the lac repressor system: studies using high-pressure fluorescence spectroscopy. Biochemistry. 1990 May 22;29(20):4959–4966. doi: 10.1021/bi00472a028. [DOI] [PubMed] [Google Scholar]
  27. Schlageck J. G., Baughman M., Yarbrough L. R. Spectroscopic techniques for study of phosphodiester bond formation by Escherichia coli RNA polymerase. J Biol Chem. 1979 Dec 10;254(23):12074–12077. [PubMed] [Google Scholar]
  28. Schäfer R., Zillig W., Zechel K. A model for the initiation of transcription by DNA-dependent RNA polymerase from Escherichia coli. Eur J Biochem. 1973 Mar 1;33(2):207–214. doi: 10.1111/j.1432-1033.1973.tb02671.x. [DOI] [PubMed] [Google Scholar]
  29. Wang D., Meier T. I., Chan C. L., Feng G., Lee D. N., Landick R. Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell. 1995 May 5;81(3):341–350. doi: 10.1016/0092-8674(95)90387-9. [DOI] [PubMed] [Google Scholar]
  30. Wilson K. S., von Hippel P. H. Stability of Escherichia coli transcription complexes near an intrinsic terminator. J Mol Biol. 1994 Nov 18;244(1):36–51. doi: 10.1006/jmbi.1994.1702. [DOI] [PubMed] [Google Scholar]
  31. Wilson K. S., von Hippel P. H. Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8793–8797. doi: 10.1073/pnas.92.19.8793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wu J. Q., Macgregor R. B., Jr Pressure dependence of the melting temperature of dA.dT polymers. Biochemistry. 1993 Nov 23;32(46):12531–12537. doi: 10.1021/bi00097a033. [DOI] [PubMed] [Google Scholar]
  33. Yager T. D., von Hippel P. H. A thermodynamic analysis of RNA transcript elongation and termination in Escherichia coli. Biochemistry. 1991 Jan 29;30(4):1097–1118. doi: 10.1021/bi00218a032. [DOI] [PubMed] [Google Scholar]
  34. Yarbrough L. R., Schlageck J. G., Baughman M. Synthesis and properties of fluorescent nucleotide substrates for DNA-dependent RNA polymerases. J Biol Chem. 1979 Dec 10;254(23):12069–12073. [PubMed] [Google Scholar]
  35. Yin H., Wang M. D., Svoboda K., Landick R., Block S. M., Gelles J. Transcription against an applied force. Science. 1995 Dec 8;270(5242):1653–1657. doi: 10.1126/science.270.5242.1653. [DOI] [PubMed] [Google Scholar]
  36. Zaychikov E., Denissova L., Heumann H. Translocation of the Escherichia coli transcription complex observed in the registers 11 to 20: "jumping" of RNA polymerase and asymmetric expansion and contraction of the "transcription bubble". Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1739–1743. doi: 10.1073/pnas.92.5.1739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. von Hippel P. H., Yager T. D. Transcript elongation and termination are competitive kinetic processes. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2307–2311. doi: 10.1073/pnas.88.6.2307. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES