Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1998 Jul;75(1):463–470. doi: 10.1016/S0006-3495(98)77534-4

Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states.

G J Vidugiris 1, C A Royer 1
PMCID: PMC1299719  PMID: 9649407

Abstract

The volume change for the transition from the native state of horse heart apomyoglobin to a pressure-induced intermediate with fluorescence properties similar to those of the well-established molten globule or I form was measured to be -70 ml/mol. Complete unfolding of the protein by pressure at pH 4.2 revealed an upper limit for the unfolding of the intermediate of -61 ml/mol. At 0.3 M guanidine hydrochloride, the entire transition from native to molten globule to unfolded state was observed in the available pressure range below 2.5 kbar. The volume change for the N-->I transition is relatively large and does not correlate well with the changes in relative hydration for these transitions derived from measurements of the changes in heat capacity, consistent with the previously observed lack of correlation between the m-value for denaturant-induced transitions and the measured volume change of unfolding for cooperativity mutants of staphylococcal nuclease (Frye et al. 1996. Biochemistry. 35:10234-10239). Our results support the hypothesis that the volume change associated with the hydration of protein surface upon unfolding may involve both positive and negative underlying contributions that effectively cancel, and that the measured volume changes for protein structural transitions arise from another source, perhaps the elimination of void volume due to packing defects in the structured chains.

Full Text

The Full Text of this article is available as a PDF (89.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balestrieri C., Colonna G., Giovane A., Irace G., Servillo L. Equilibrium evidence of non-single step transition during guanidine unfolding of apomyoglobins. FEBS Lett. 1976 Jul 1;66(1):60–64. doi: 10.1016/0014-5793(76)80585-6. [DOI] [PubMed] [Google Scholar]
  2. Barrick D., Baldwin R. L. Three-state analysis of sperm whale apomyoglobin folding. Biochemistry. 1993 Apr 13;32(14):3790–3796. doi: 10.1021/bi00065a035. [DOI] [PubMed] [Google Scholar]
  3. Bismuto E., Irace G., Sirangelo I., Gratton E. Pressure-induced perturbation of ANS-apomyoglobin complex: frequency domain fluorescence studies on native and acidic compact states. Protein Sci. 1996 Jan;5(1):121–126. doi: 10.1002/pro.5560050115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bismuto E., Sirangelo I., Irace G., Gratton E. Pressure-induced perturbation of apomyoglobin structure: fluorescence studies on native and acidic compact forms. Biochemistry. 1996 Jan 30;35(4):1173–1178. doi: 10.1021/bi951163g. [DOI] [PubMed] [Google Scholar]
  5. Brandts J. F., Oliveira R. J., Westort C. Thermodynamics of protein denaturation. Effect of pressu on the denaturation of ribonuclease A. Biochemistry. 1970 Feb 17;9(4):1038–1047. doi: 10.1021/bi00806a045. [DOI] [PubMed] [Google Scholar]
  6. CRUMPTON M. J., POLSON A. A COMPARISON OF THE CONFORMATION OF SPERM WHALE METMYOGLOBIN WITH THAT OF APOMYOGLOBIN. J Mol Biol. 1965 Apr;11:722–729. doi: 10.1016/s0022-2836(65)80030-4. [DOI] [PubMed] [Google Scholar]
  7. Chalikian T. V., Bresiauer K. J. On volume changes accompanying conformational transitions of biopolymers. Biopolymers. 1996 Nov;39(5):619–626. doi: 10.1002/(sici)1097-0282(199611)39:5<619::aid-bip1>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  8. Dill K. A. Dominant forces in protein folding. Biochemistry. 1990 Aug 7;29(31):7133–7155. doi: 10.1021/bi00483a001. [DOI] [PubMed] [Google Scholar]
  9. Eliezer D., Wright P. E. Is apomyoglobin a molten globule? Structural characterization by NMR. J Mol Biol. 1996 Nov 8;263(4):531–538. doi: 10.1006/jmbi.1996.0596. [DOI] [PubMed] [Google Scholar]
  10. Frye K. J., Perman C. S., Royer C. A. Testing the correlation between delta A and delta V of protein unfolding using m value mutants of staphylococcal nuclease. Biochemistry. 1996 Aug 6;35(31):10234–10239. doi: 10.1021/bi960693p. [DOI] [PubMed] [Google Scholar]
  11. Gast K., Damaschun H., Misselwitz R., Müller-Frohne M., Zirwer D., Damaschun G. Compactness of protein molten globules: temperature-induced structural changes of the apomyoglobin folding intermediate. Eur Biophys J. 1994;23(4):297–305. doi: 10.1007/BF00213579. [DOI] [PubMed] [Google Scholar]
  12. Goto Y., Fink A. L. Phase diagram for acidic conformational states of apomyoglobin. J Mol Biol. 1990 Aug 20;214(4):803–805. doi: 10.1016/0022-2836(90)90334-I. [DOI] [PubMed] [Google Scholar]
  13. Griko Y. V., Privalov P. L. Thermodynamic puzzle of apomyoglobin unfolding. J Mol Biol. 1994 Jan 28;235(4):1318–1325. doi: 10.1006/jmbi.1994.1085. [DOI] [PubMed] [Google Scholar]
  14. Griko Y. V., Privalov P. L., Venyaminov S. Y., Kutyshenko V. P. Thermodynamic study of the apomyoglobin structure. J Mol Biol. 1988 Jul 5;202(1):127–138. doi: 10.1016/0022-2836(88)90525-6. [DOI] [PubMed] [Google Scholar]
  15. Hagihara Y., Aimoto S., Fink A. L., Goto Y. Guanidine hydrochloride-induced folding of proteins. J Mol Biol. 1993 May 20;231(2):180–184. doi: 10.1006/jmbi.1993.1272. [DOI] [PubMed] [Google Scholar]
  16. Hughson F. M., Barrick D., Baldwin R. L. Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry. 1991 Apr 30;30(17):4113–4118. doi: 10.1021/bi00231a001. [DOI] [PubMed] [Google Scholar]
  17. Hughson F. M., Wright P. E., Baldwin R. L. Structural characterization of a partly folded apomyoglobin intermediate. Science. 1990 Sep 28;249(4976):1544–1548. doi: 10.1126/science.2218495. [DOI] [PubMed] [Google Scholar]
  18. Irace G., Balestrieri C., Parlato G., Servillo L., Colonna G. Tryptophanyl fluorescence heterogeneity of apomyoglobins. Correlation with the presence of two distinct structural domains. Biochemistry. 1981 Feb 17;20(4):792–799. doi: 10.1021/bi00507a022. [DOI] [PubMed] [Google Scholar]
  19. Jennings P. A., Wright P. E. Formation of a molten globule intermediate early in the kinetic folding pathway of apomyoglobin. Science. 1993 Nov 5;262(5135):892–896. doi: 10.1126/science.8235610. [DOI] [PubMed] [Google Scholar]
  20. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  21. Kataoka M., Nishii I., Fujisawa T., Ueki T., Tokunaga F., Goto Y. Structural characterization of the molten globule and native states of apomyoglobin by solution X-ray scattering. J Mol Biol. 1995 May 26;249(1):215–228. doi: 10.1006/jmbi.1995.0290. [DOI] [PubMed] [Google Scholar]
  22. Kay M. S., Baldwin R. L. Packing interactions in the apomyglobin folding intermediate. Nat Struct Biol. 1996 May;3(5):439–445. doi: 10.1038/nsb0596-439. [DOI] [PubMed] [Google Scholar]
  23. Kirby E. P., Steiner R. F. The tryptophan microenvironments in apomyoglobin. J Biol Chem. 1970 Dec 10;245(23):6300–6306. [PubMed] [Google Scholar]
  24. Klapper M. H. On the nature of the protein interior. Biochim Biophys Acta. 1971 Mar 23;229(3):557–566. doi: 10.1016/0005-2795(71)90271-6. [DOI] [PubMed] [Google Scholar]
  25. Loh S. N., Kay M. S., Baldwin R. L. Structure and stability of a second molten globule intermediate in the apomyoglobin folding pathway. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5446–5450. doi: 10.1073/pnas.92.12.5446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mozhaev V. V., Heremans K., Frank J., Masson P., Balny C. High pressure effects on protein structure and function. Proteins. 1996 Jan;24(1):81–91. doi: 10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  27. Paladini A. A., Jr, Weber G. Pressure-induced reversible dissociation of enolase. Biochemistry. 1981 Apr 28;20(9):2587–2593. doi: 10.1021/bi00512a034. [DOI] [PubMed] [Google Scholar]
  28. Panick G., Malessa R., Winter R., Rapp G., Frye K. J., Royer C. A. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy. J Mol Biol. 1998 Jan 16;275(2):389–402. doi: 10.1006/jmbi.1997.1454. [DOI] [PubMed] [Google Scholar]
  29. Peng X., Jonas J., Silva J. L. High-pressure NMR study of the dissociation of Arc repressor. Biochemistry. 1994 Jul 12;33(27):8323–8329. doi: 10.1021/bi00193a020. [DOI] [PubMed] [Google Scholar]
  30. Rashin A. A., Iofin M., Honig B. Internal cavities and buried waters in globular proteins. Biochemistry. 1986 Jun 17;25(12):3619–3625. doi: 10.1021/bi00360a021. [DOI] [PubMed] [Google Scholar]
  31. Royer C. A., Beechem J. M. Numerical analysis of binding data: advantages, practical aspects, and implications. Methods Enzymol. 1992;210:481–505. doi: 10.1016/0076-6879(92)10025-9. [DOI] [PubMed] [Google Scholar]
  32. Royer C. A., Hinck A. P., Loh S. N., Prehoda K. E., Peng X., Jonas J., Markley J. L. Effects of amino acid substitutions on the pressure denaturation of staphylococcal nuclease as monitored by fluorescence and nuclear magnetic resonance spectroscopy. Biochemistry. 1993 May 18;32(19):5222–5232. doi: 10.1021/bi00070a034. [DOI] [PubMed] [Google Scholar]
  33. Royer C. A. Improvements in the numerical analysis of thermodynamic data from biomolecular complexes. Anal Biochem. 1993 Apr;210(1):91–97. doi: 10.1006/abio.1993.1155. [DOI] [PubMed] [Google Scholar]
  34. Royer C. A., Smith W. R., Beechem J. M. Analysis of binding in macromolecular complexes: a generalized numerical approach. Anal Biochem. 1990 Dec;191(2):287–294. doi: 10.1016/0003-2697(90)90221-t. [DOI] [PubMed] [Google Scholar]
  35. Sire O., Alpert B., Royer C. A. Probing pH and pressure effects on the apomyoglobin heme pocket with the 2'-(N,N-dimethylamino)-6-naphthoyl-4-trans-cyclohexanoic acid fluorophore. Biophys J. 1996 Jun;70(6):2903–2914. doi: 10.1016/S0006-3495(96)79860-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. TEALE F. W. Cleavage of the haem-protein link by acid methylethylketone. Biochim Biophys Acta. 1959 Oct;35:543–543. doi: 10.1016/0006-3002(59)90407-x. [DOI] [PubMed] [Google Scholar]
  37. Takeda N., Kato M., Taniguchi Y. Pressure- and thermally-induced reversible changes in the secondary structure of ribonuclease A studied by FT-IR spectroscopy. Biochemistry. 1995 May 2;34(17):5980–5987. doi: 10.1021/bi00017a027. [DOI] [PubMed] [Google Scholar]
  38. Vidugiris G. J., Markley J. L., Royer C. A. Evidence for a molten globule-like transition state in protein folding from determination of activation volumes. Biochemistry. 1995 Apr 18;34(15):4909–4912. doi: 10.1021/bi00015a001. [DOI] [PubMed] [Google Scholar]
  39. Weber G., Drickamer H. G. The effect of high pressure upon proteins and other biomolecules. Q Rev Biophys. 1983 Feb;16(1):89–112. doi: 10.1017/s0033583500004935. [DOI] [PubMed] [Google Scholar]
  40. Zipp A., Kauzmann W. Pressure denaturation of metmyoglobin. Biochemistry. 1973 Oct 9;12(21):4217–4228. doi: 10.1021/bi00745a028. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES